• 2023年第39卷第5期文章目次
    全 选
    显示方式: |
    • >封面
    • 封面

      2023, 39(5):0-0.

      摘要 (271) HTML (0) PDF 28.83 M (970) 评论 (0) 收藏

      摘要:

    • >目录
    • 目录

      2023, 39(5):0-0.

      摘要 (205) HTML (0) PDF 1.32 M (721) 评论 (0) 收藏

      摘要:

    • >序言
    • 塑料的生物降解与转化专刊序言

      2023, 39(5):1861-1866. DOI: 10.13345/j.cjb.230299

      摘要 (515) HTML (914) PDF 565.30 K (952) 评论 (0) 收藏

      摘要:合成塑料已广泛应用于国民经济各领域,是国民经济的支柱产业。然而,不规范生产、使用塑料制品以及处置塑料废弃物等问题,造成塑料在环境中长期累积,导致了严重的环境污染和碳资源浪费。生物降解是实现废塑料污染治理与资源化的新途径,已成为国内外废弃塑料处置研究的热点。近年来,在塑料降解微生物/酶资源的分离、筛选、鉴定以及对其进行工程化改造等方面取得了重要突破,为环境中微塑料的治理、废塑料的闭环循环再生提供了新的思路和方案。另一方面,利用微生物(纯菌或菌群)将塑料降解产生的单体进一步转化为生物可降解塑料及其他具有高附加值的化合物,对于解决废塑料的生态环境污染、推动塑料循环经济发展以及减少塑料在生命周期中的碳排放等方面具有重要意义。《生物工程学报》特组织出版“塑料的生物降解与转化”专刊,邀请了国内外塑料生物降解与转化领域的相关专家学者介绍了塑料生物降解资源的发掘、塑料解聚酶的设计与改造、塑料降解物的生物高值转化等领域最新进展和研究成果,收录了包括评论、综述、研究论文等类型的相关文章16篇,为塑料生物降解与转化的进一步研究提供借鉴和指导。

    • >发展规划研究
    • 循环生物经济背景下我国塑料降解回收发展的机遇、挑战及建议

      2023, 39(5):1867-1882. DOI: 10.13345/j.cjb.221028

      摘要 (385) HTML (1037) PDF 848.11 K (1464) 评论 (0) 收藏

      摘要:当前,白色污染造成的消极影响已经扩散到人类社会经济、生态和健康等各个方面,循环生物经济发展进程面临严峻挑战。作为全球最大的塑料生产消费国家,我国在塑料污染的治理问题上肩负着重要责任。在此背景下,本文分析了美国、欧洲、日本与我国塑料降解与回收的相关战略,并对该领域的文献与专利展开计量,从研发趋势、主要研发国家和研发机构等角度了解其技术研发现状,探讨我国塑料降解回收发展面临的机会与挑战,最终提出了政策体系、技术路径、产业发展与公众认知四位一体的未来发展建议。

    • >评论
    • 评论:塑料结合模块促进聚对苯二甲酸乙二醇酯的酶法降解

      2023, 39(5):1883-1888. DOI: 10.13345/j.cjb.221033

      摘要 (317) HTML (686) PDF 500.72 K (990) 评论 (0) 收藏

      摘要:塑料的大量生产和无节制的使用已造成严重的环境污染。为了减少塑料废物对环境的影响,近年来塑料酶法降解已成为国内外研究者关注的热点。例如,通过蛋白质工程策略提高塑料降解酶催化活性和热稳定性,进一步提高酶法降解的效率。另外,通过融合酶策略将塑料结合模块与塑料降解酶融合,也可以促进塑料降解。近期发表在期刊Chem Catalysis的一项研究表明,采用碳水化合物结合模块融合策略可以在低浓度(<10 wt%)的底物聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate), PET]中提高塑料降解酶的活性。但是在高浓度底物(10 wt%-20 wt%)中,该策略无法提高PET的酶法降解。该项研究对于采用塑料结合模块促进酶法降解塑料具有重要的指导意义。

    • >塑料生物降解资源的发掘
    • 塑料生物降解检测方法的研究进展

      2023, 39(5):1889-1911. DOI: 10.13345/j.cjb.220863

      摘要 (486) HTML (1098) PDF 1.05 M (2293) 评论 (0) 收藏

      摘要:塑料处理不当造成的污染问题已成为全球性难题。目前的解决办法除回收利用与使用可生物降解塑料替代之外,最主要途径仍是寻求高效的塑料降解方法。其中,采用微生物或酶处理塑料的方法因其具有条件温和、不产生次生环境污染的优势而受到越来越多的关注。塑料生物降解技术的核心是高效解聚微生物/酶,然而当前的分析检测方法无法满足塑料生物降解资源的高效筛选,因此开发准确、快速的塑料降解过程分析方法,对于生物降解资源筛选和降解效能评价具有重要意义。本文介绍了近年来在塑料生物降解领域的常用分析检测技术,包括高效液相色谱、红外光谱、凝胶渗透色谱以及透明圈测定等,重点讨论了荧光分析策略在快速表征塑料生物降解过程中的应用,为进一步规范塑料生物降解过程的表征与分析研究,以及开发更高效的塑料生物降解资源筛选方法提供借鉴。

    • 聚乳酸塑料合成、生物降解及其废弃物处置的研究进展

      2023, 39(5):1912-1929. DOI: 10.13345/j.cjb.220978

      摘要 (670) HTML (1147) PDF 1014.90 K (1526) 评论 (0) 收藏

      摘要:随着国内外禁塑令和限塑令的升级,以聚乳酸(polylactic acid, PLA)为代表的生物基塑料成为传统石油基塑料市场的主要替代品,备受产业界的青睐。然而,公众对生物基塑料的认识仍存在诸多误解。事实上,生物基塑料的降解需要在特定条件下才能实现,泄入到自然环境中同样难以降解,会对人体、生物多样性和生态系统功能造成危害,这与传统石油基塑料相似。近年来,随着我国PLA产能和市场规模不断的提高,亟需进一步加强对PLA等生物基塑料降解性能的认识,挖掘PLA生物降解资源,关注和研究生物基塑料回收处理模式。基于上述背景,本文首先介绍了PLA塑料的性质及合成方式,以及PLA塑料的产业化与市场规模;其次,对目前聚乳酸塑料微生物与酶法降解的研究进展进行了综述,并对其生物降解机制进行了探讨;最后,提出了微生物原位处理和酶法闭环回收两种聚乳酸塑料废弃物生物处置方法,并对PLA生物基塑料的发展前景和趋势进行了展望。

    • 生物降解聚烯烃类塑料研究进展

      2023, 39(5):1930-1948. DOI: 10.13345/j.cjb.221024

      摘要 (450) HTML (1112) PDF 1015.33 K (1330) 评论 (0) 收藏

      摘要:聚烯烃类塑料是一类以C-C键为骨架的高分子材料,被广泛应用于日常生活的各个领域。由于具有稳定的化学性质并且难以被环境中的微生物快速降解,聚烯烃塑料废弃物在全球范围内持续积累,造成了严重的环境污染及生态危机。近年来,利用生物方法降解聚烯烃类塑料引起了研究人员的广泛关注。自然界丰富的微生物资源为生物降解聚烯烃类塑料废弃物提供了可能,已经有一些对聚烯烃塑料具有降解能力的微生物被陆续报道。本文总结了聚烯烃类塑料生物降解资源及生物降解机制的研究进展,提出了目前聚烯烃类塑料生物降解过程存在的问题,并对未来的研究方向进行了展望。

    • 聚乙烯塑料生物降解研究进展

      2023, 39(5):1949-1962. DOI: 10.13345/j.cjb.220868

      摘要 (527) HTML (1180) PDF 702.60 K (1373) 评论 (0) 收藏

      摘要:聚乙烯(polyethylene, PE)塑料是全球通用合成树脂中产量最丰富的品种,也是最难降解的塑料之一,其在环境中大量积累已造成严重的生态污染。传统的垃圾填埋、堆肥和焚烧处理技术难以满足生态环境的保护要求,生物降解是解决塑料污染问题的一种生态友好、成本低廉、前景可期的方法。本文对PE塑料的化学结构、降解微生物的种类、降解酶和代谢途径等方面进行了综述,结合国内外PE塑料生物降解的前沿和热点问题,建议重点开展高效降解菌株筛选、人工合成菌群构建、降解酶的挖掘与改造等方面的研究,为PE塑料生物降解研究提供路径选择和理论借鉴。

    • 聚氨酯塑料降解菌G-11的筛选鉴定及其塑料降解特性

      2023, 39(5):1963-1975. DOI: 10.13345/j.cjb.220976

      摘要 (368) HTML (808) PDF 890.81 K (1074) 评论 (0) 收藏

      摘要:聚氨酯(polyurethane, PUR)塑料因其特殊的理化性质而被广泛应用。然而,大量废弃PUR塑料的不合理处置造成了严重的资源浪费和环境污染。利用微生物的手段实现废弃PUR塑料的高效降解和循环利用成为目前的研究热点之一,而高效降解菌是PUR塑料生物法处理的关键。本研究以垃圾填埋场PUR类废塑料样品为来源,分离到一株能够降解PUR类似物Impranil DLN的微生物,并对其PUR降解特性开展了研究。通过16S rRNA基因序列比对将该菌初步鉴定为拟无枝杆菌属(Amycolatopsis sp.),命名为G-11。PUR塑料降解实验结果表明,菌株G-11对商业化PUR塑料的减重率达到4.67%,扫描电镜(scanning electron microscope, SEM)发现塑料结构被破坏,表面出现侵蚀。接触角分析和热重分析(thermogravimetric analysis, TGA)结果发现,菌株G-11处理后的PUR塑料的亲水性增强,热稳定性下降,该结果与减重和扫描电镜结果相一致。结果表明,分离自垃圾填埋场的菌株G-11在废弃PUR类塑料生物降解方面具有一定的应用潜力。

    • >塑料解聚酶的设计与改造
    • 一株聚酯型聚氨酯降解菌高地芽孢杆菌YX8-1的分离及鉴定

      2023, 39(5):1976-1986. DOI: 10.13345/j.cjb.230010

      摘要 (357) HTML (674) PDF 997.20 K (929) 评论 (0) 收藏

      摘要:聚氨酯(polyurethane, PUR)塑料在日常生活中发挥着重要作用,但同时PUR废弃物也带来严重的环境污染问题。生物(酶)降解是一种环境友好、成本低廉的PUR废弃物回收方法,其关键在于获得高效的降解菌株或酶。本研究从垃圾填埋场的聚氨酯废弃物表面分离出了一株聚酯型PUR降解菌株YX8-1。基于菌落和显微形态观察、16S rDNA和DNA旋转酶(DNA gyrase)基因gyrA系统发育分析及基因组序列比对,将该菌鉴定为高地芽孢杆菌(Bacillus altitudinis)。高效液相色谱(high performance liquid chromatography, HPLC)及液相色谱-质谱联用(liquid chromatography-tandem mass spectrometry, LC-MS/MS)结果显示菌株YX8-1能降解自行合成的聚酯型PUR寡聚物(PBA-PU),并产生单体化合物4,4′-亚甲基二苯胺。此外,菌株YX8-1能在30 d内使商品化的聚酯型PUR海绵失重32%。本研究为PUR废弃物的生物降解提供了菌株资源,也为挖掘相关降解酶打下了基础。

    • 角质酶在生物可降解聚酯聚己二酸/对苯二甲酸丁二醇酯降解中的应用

      2023, 39(5):1987-1997. DOI: 10.13345/j.cjb.220819

      摘要 (456) HTML (898) PDF 733.10 K (915) 评论 (0) 收藏

      摘要:随着废弃塑料带来的环境污染越来越严重,生物可降解聚酯已成为大众关注的焦点。聚己二酸/对苯二甲酸丁二醇酯[poly(butylene adipate-co-terephthalate), PBAT]是脂肪族和芳香族共聚形成的生物可降解聚酯,兼具两者的优异性能。针对PBAT在自然条件下对降解环境要求严格且降解周期长的不足之处,本研究探究了角质酶在PBAT降解中的应用和对苯二甲酸-丁二醇酯(butylene terephthalate, BT)含量对PBAT生物降解性的影响,以实现对PBAT降解速率的提升。选取5种不同来源的聚酯降解酶对PBAT进行降解应用并比较出降解效果最优的酶,并测定了含有不同BT含量的PBAT聚酯的降解效率。结果表明,角质酶ICCG为降解效果最好的酶,且BT含量越高PBAT的降解率越低。此外,还确定了角质酶ICCG对高BT含量的PBAT(H)降解的最适温度、最适缓冲液类型、最适pH、最适E/S (enzyme to substrate)和最适底物浓度比分别为75 °C、Tris-HCl、9.0、0.4%和1.0%。本研究结果可为角质酶在PBAT降解中的应用提供一定的理论依据和实验参考。

    • 聚对苯二甲酸乙二醇酯水解酶研究进展

      2023, 39(5):1998-2014. DOI: 10.13345/j.cjb.220915

      摘要 (619) HTML (1226) PDF 1.89 M (1013) 评论 (0) 收藏

      摘要:塑料自20世纪首次合成以来给人类生活带来了极大的便利。然而,塑料稳定的高分子结构导致了塑料废弃物的持续堆积,对生态环境和人类健康均造成严重威胁。聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate), PET]是产量最高的一种聚酯类塑料,近年来PET水解酶的相关研究展现出生物酶法对塑料进行降解、回收的巨大潜力,也为塑料生物降解机制研究建立了参考范例。本文综述了不同微生物来源的PET水解酶及其PET降解能力,阐述了最具代表性的PET水解酶—IsPETase降解PET的催化机理,并总结了近年来通过酶工程改造而获得的高效降解酶,为未来的PET降解机制研究、PET高效降解酶的进一步挖掘和改造提供参考。

    • 来源于嗜热氢化杆菌的新型对苯二甲酸双(羟乙)酯水解酶的表达纯化与酶学性质

      2023, 39(5):2015-2026. DOI: 10.13345/j.cjb.220945

      摘要 (241) HTML (828) PDF 834.85 K (1438) 评论 (0) 收藏

      摘要:石化来源的聚对苯二甲酸乙二酯(polyethylene terephthalate, PET)被广泛用于矿泉水瓶、食品包装和纺织品等领域,因其在自然界中不易分解,大量使用后的PET废弃物造成了严重的环境污染与资源浪费。使用生物酶法对PET废弃物进行解聚,并对解聚产物进行升级循环利用是进行塑料污染治理的重要方向之一,其中关键的是PET水解酶的解聚效率。对苯二甲酸双(羟乙基)酯(bis (hydroxyethyl) terephthalate, BHET)是PET生物酶解的中间产物,其累积是限制PET水解酶催化效率的一个重要因素,BHET水解酶和PET水解酶的联用能提升PET的整体水解效率。来源于嗜热氢化杆菌(Hydrogenobacter thermophilus)的双烯内酯酶(HtBHETase)对BHET有显著水解效果,将该酶在大肠杆菌(Escherichia coli)中进行重组表达并纯化后,对其酶学性质进行了研究。结果显示,HtBHETase对短碳链的酯类如对硝基苯酚乙酸酯催化活性较高,HtBHETase以BHET为底物时的最适反应pH值和最适反应温度分别为5.0和55 °C;该酶有较好的热稳定性,经80 °C的条件处理1 h仍能保持80%以上活性,显示出了良好的热稳定性,HtBHETase有在PET塑料生物解聚中使用的潜力,本研究为推动生物酶法降解PET提供了新的参考。

    • 来源于糖丝菌双(2-羟乙基)对苯二甲酸酯水解酶的酶学性质表征及降解特性分析

      2023, 39(5):2027-2039. DOI: 10.13345/j.cjb.220991

      摘要 (331) HTML (698) PDF 958.26 K (968) 评论 (0) 收藏

      摘要:聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate), PET]降解酶的发掘是国内外研究的热点。双(2-羟乙基)对苯二甲酸酯[bis-(2-hydroxyethyl) terephthalic acid, BHET]是PET降解过程的一种中间化合物,会与PET竞争酶的底物结合位点,从而抑制PET进一步降解。因此,探寻新型BHET降解酶,对进一步提高PET的降解效率具有促进作用。本研究通过基因挖掘发现了一种来源于浅黄糖丝菌(Saccharothrix luteola)参与PET降解过程的水解酶基因sle (ID: CP064192.1, 5085270-5086049),其编码的蛋白质可以将BHET水解为单(2-羟乙基)对苯二甲酸酯[mono-(2-hydroxyethyl) terephthalate, MHET]和对苯二甲酸(terephthalic acid, TPA)。将BHET水解酶(Sle)通过重组质粒在大肠杆菌(Escherichia coli)中异源表达,结果表明,在异丙基-β-d-硫代半乳糖苷(isopropyl-β-d-thiogalactoside, IPTG)诱导终浓度为0.4 mmol/L,诱导时长为12 h,诱导温度为20 °C时蛋白的表达量最高。通过镍亲和层析、阴离子交换层析和凝胶过滤层析3步分离纯化,获得了高纯度的Sle重组蛋白;同时对其酶学性质进行了表征,Sle最适温度和pH分别为35 °C和8.0,在25-35 °C和pH 7.0-9.0区间内能保持80%以上的残余酶活,且金属离子Co2+能提高酶活力;进一步通过同源序列及Sle复合物结构分析得知,该酶属于二烯酸内酯水解酶(dienelactone hydrolase, DLH)家族,具备该家族典型的催化三联体,预测其催化位点分别为S129、D175和H207,并初步分析了其催化机理。最后,利用高效液相色谱法(high performance liquid chromatography, HPLC)鉴定了该酶能够特异性降解BHET生成MHET和TPA,属于BHET降解酶。本研究为生物酶法高效降解PET塑料提供了新的酶资源。

    • 来源于海洋宏基因组塑料降解酶Ple629的耐热性提升改造

      2023, 39(5):2040-2052. DOI: 10.13345/j.cjb.221045

      摘要 (353) HTML (684) PDF 752.28 K (1063) 评论 (0) 收藏

      摘要:石化来源的聚酯类塑料如聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)以及聚己二酸/对苯二甲酸丁二醇酯(polybutylene adipate terephthalate, PBAT)等已被广泛使用,但由于它们在自然界中难以降解或生物降解周期较长导致了严重的环境污染,因此对这些塑料废弃物的处理是亟待解决的问题之一。从循环经济的角度考虑,利用生物酶法对聚酯类塑料如PET或PBAT等的废弃物进行解聚,再将解聚产物进行循环利用,是一个很有潜力的研究方向。探究近年来关于聚酯塑料降解酶的报道发现,高活性且耐高温的降解酶会有更大的潜在优势。来自海洋微生物宏基因组的中温塑料降解酶Ple629,在常温下对聚酯类塑料PET和PBAT均有较好的降解活力,但由于不耐受高温,限制了其潜在应用。在前期获得Ple629三维结构的基础上,本研究基于结构比对及能量设计,找到了一些潜在提升其热稳定性的位点进行改造设计,并对突变体进行了表达纯化和热稳定性测定。突变体V80C和D226C/S281C的熔点温度(Tm)值分别提升了5.2 °C和6.9 °C,突变体D226C/S281C的活性也比野生型酶提高了1.5倍,为后续对Ple629的进一步改造提供了思路和依据。

    • >塑料降解物的生物高值转化
    • 塑料的降解与可降解塑料——聚羟基脂肪酸酯的合成

      2023, 39(5):2053-2069. DOI: 10.13345/j.cjb.230033

      摘要 (408) HTML (1230) PDF 811.04 K (1106) 评论 (0) 收藏

      摘要:近年来,塑料污染的问题始终困扰着人类社会。为了解决不可回收的塑料带来的环境问题,“降塑再造”的理念被提出。“降塑再造”主要包括塑料的降解和塑料的再生。而再生成为可降解的聚羟基脂肪酸酯(polyhydroxyalkanoates, PHA)则是实现塑料内循环的一种方式。PHA是一种可由多种微生物合成的生物聚酯,以其特有的生物相容性和可降解性以及热加工性能而被大家所关注。同时利用PHA的多样化的单体组成、加工技术和改性方法,可以进一步改善PHA的性能,产生类型多样、性能各异的PHA材料,也可以创造平衡耐久性和生物降解性的新产品,这些特性使PHA有望成为传统塑料的替代品之一。利用极端微生物进行生产的“下一代工业技术(next-generation industrial biotechnology, NGIB)”可以增加PHA的市场竞争力,为国家碳中和目标顺利实施提供参考。本文综述了各类塑料降解并生产PHA的可能性、PHA材料的基础材料属性、加工和改性方法及获得的新材料、新技术和独特的材料性质。

    • 生物基塑料单体5-氨基戊酸的生物合成新途径

      2023, 39(5):2070-2080. DOI: 10.13345/j.cjb.220929

      摘要 (354) HTML (806) PDF 1.03 M (1044) 评论 (0) 收藏

      摘要:5-氨基戊酸(5-aminovalanoic acid, 5AVA)可作为新型塑料尼龙5和尼龙56的前体,是合成聚酰亚胺的有前途的平台化合物。目前5-氨基戊酸的生物合成法普遍产率较低且合成过程复杂,成本高。为实现5AVA的绿色生物合成,本研究通过组合表达来自日本白腹鲭(Scomber japonicas)的l-赖氨酸α-氧化酶、来自乳酸乳球菌(Lactococcus lactis)的α-酮酸脱羧酶和来自大肠杆菌(Escherichia coli)的醛脱氢酶,在大肠杆菌中建立了一条以l-赖氨酸为原料,以2-酮-6-氨基己酸盐为中间产物生物合成5AVA的途径。在葡萄糖浓度为55 g/L,赖氨酸盐酸盐40 g/L的初始条件下,最终消耗158 g/L的葡萄糖和144 g/L的赖氨酸盐酸盐,补料分批发酵产生了57.52 g/L的5AVA,摩尔得率为0.62 mol/mol。与文献报道的以2-酮-6-氨基己酸盐为中间产物的5AVA生物合成途径相比,本文报道的新途径无需使用乙醇和双氧水,且5AVA产量进一步提高。

    • 生物可降解塑料单体二元羧酸的生物合成研究进展

      2023, 39(5):2081-2094. DOI: 10.13345/j.cjb.220944

      摘要 (408) HTML (1057) PDF 784.64 K (1321) 评论 (0) 收藏

      摘要:塑料是最重要的聚合物材料之一,需求量巨大,但存在处理困难、污染大等缺点。环境友好型的生物可降解塑料有望成为目前塑料的替代品,以满足社会各界对于塑料制品日益增长的需求。二元羧酸是生物可降解塑料中重要的单体之一,可降解性强,应用广泛,并且可以通过全生物法合成。因此,本文重点选取了几种比较有代表性的二元羧酸,总结它们的生物合成途径以及其代谢改造手段,以期为中长链等复杂二元羧酸的生物法合成提供借鉴。

当期文章


年第卷第

文章目录

过刊浏览

年份

刊期

浏览排行

引用排行

下载排行

您是第位访问者
生物工程学报 ® 2024 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司