高热稳定性己糖激酶在大肠杆菌中的表征和表达优化
作者:
基金项目:

江苏省杰出青年基金(BK20220089);天津市合成生物技术创新能力提升行动 (TSBICIP-KJGG-015)


Characterization and expression optimization of a highly thermostable hexokinase in Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    己糖激酶是血糖检测中的重要诊断试剂,因此对其酶活和热稳定性要求较高。目前国内己糖激酶主要依赖进口,大多是酵母来源酶,其价格昂贵且存在热稳定性较差等问题,限制了国内血糖诊断试剂的开发。因此,当前亟待实现高活性、高热稳定性己糖激酶的高效表达。本研究在大肠杆菌(Escherichia coli) BL21(DE3)中异源表达了一种来源于嗜热菌的ATP依赖型己糖激酶(glucokinase, Glk),发现其对葡萄糖特异性高、依赖Mg2+,最适pH和温度分别为8.5和80 ℃,在30-37 ℃下保存7 d后酶活保留90%以上,属于热稳定的偏碱性葡萄糖激酶。随后系统优化了Glk表达的培养基、诱导时机、诱导剂终浓度、诱导温度、诱导时长等因素,优化后Glk表达量相比于优化前提高了4.71倍。Glk纯化后,比酶活达到(43.05±2.00) U/mg,纯度达到95%以上。本研究开发的高热稳定己糖激酶的表达和纯化方法,为突破血糖诊断试剂制备中的短板提供了更多可能性和发展空间。

    Abstract:

    Hexokinase is a crucial diagnostic reagent in blood glucose testing, which has high requirements for the enzyme activity and thermal stability. The hexokinases in China mainly rely on imports and are primarily sourced from yeast, with high costs and poor thermal stability, which limit the development of blood glucose diagnostic reagents. Therefore, there is an urgent need for the efficient expression of highly active and thermally stable hexokinases. In this study, an ATP-dependent hexokinase (glucokinase, Glk) from a thermophilic bacterium Glk was heterologously expressed in Escherichia coli BL21(DE3). Glk exhibited high specificity for glucose, dependence on Mg2+, and the highest activity at pH 8.5 and 80 ℃. It retained over 90% activity after storage at 30–37 ℃ for 7 days, demonstrating thermal stability as an alkaline glucose kinase. Subsequently, the factors influencing Glk expression, including culture medium, OD600, final concentration of the inducer, induction temperature, and induction duration, were systematically optimized. The optimization increased the Glk expression by 4.71 folds Glk compared with non-optimized conditions. After purification, Glk exhibited a specific activity of (43.05±2.00) U/mg and the purity ≥98%. In conclusion, the developed expression and purification method for the highly thermostable hexokinase provides more possibilities for overcoming the shortcomings in the preparation of blood glucose diagnostic reagents in China.

    参考文献
    [1] GUO C, LUDVIK AE, ARLOTTO ME, HAYES MG, ARMSTRONG LL, SCHOLTENS DM, BROWN CD, NEWGARD CB, BECKER TC, LAYDEN BT, LOWE WL, REDDY TE. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1[J]. Nature Communications, 2015, 6(1): 6069.
    [2] YADAV S, BHARTI S, MATHUR P. GlucoKinaseDB: a comprehensive, curated resource of glucokinase modulators for clinical and molecular research[J]. Computational Biology and Chemistry, 2023, 103: 107818.
    [3] 薛建, 徐俊, 黄辉. 己糖激酶法与酶电极法测定葡萄糖的方法学比较[J]. 世界最新医学信息文摘, 2016, 16(A4): 223-224. XUE J, XU J, HUANG H. Methodological comparison between hexokinase method and enzyme electrode method for the determination of glucose[J]. World Latest Medicine Information, 2016, 16(A4): 223-224(in Chinese).
    [4] JIA KK, ZHANG J. Evaluation of five routine glucose methods on an Olympus AU5400 analyzer using the CDC hexokinase reference method[J]. Clinical Chemistry and Laboratory Medicine, 2010, 48(3): 361-364.
    [5] 赵丽. 血糖测定方法的进展[J]. 安徽卫生职业技术学院学报, 2016, 15(1): 141-143. ZHAO L. Research advances in blood glucose measurement methods[J]. Journal of Anhui Health Vocational & Technical College, 2016, 15(1): 141-143(in Chinese).
    [6] SCHUCHERT-SHI A, KUBÁN P, HAUSER PC. Monitoring of enzymatic reactions using conventional and on-chip capillary electrophoresis with contactless conductivity detection[J]. Electrophoresis, 2007, 28(24): 4690-4696.
    [7] HUSSAIN F, BIRCH DJS, PICKUP JC. Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase[J]. Analytical Biochemistry, 2005, 339(1): 137-143.
    [8] DICKSON LM, BUCHMANN EJ, JANSE van RENSBURG C, NORRIS SA. The impact of differences in plasma glucose between glucose oxidase and hexokinase methods on estimated gestational diabetes mellitus prevalence[J]. Scientific Reports, 2019, 9: 7238.
    [9] GACHOKI JM. Comparative analysis of random blood glucose levels in serum, plasma and whole blood using glucose oxidase and hexokinase methods under spectrophotometric and electrochemical techniques[D]. Nairobi: Dotorial dissertation of Kenyatta University, 2020.
    [10] LIN Q, HUANG JQ, ZHANG YL, CHEN MM, XU YZ, ZOU XY, LIU SY, DAI Z. A smartphone-assisted “all-in-one” paper chip for one-pot noninvasive detection of salivary glucose level[J]. Chemical Engineering Journal, 2023, 468: 143608.
    [11] 张帅, 程晓磊, 刘曦, 李琼, 白董慧, 于广利, 郝杰杰. 葡萄糖激酶的异源表达及葡萄糖激酶激动剂筛选体系的建立[J]. 中国海洋药物, 2020, 39(5): 1-8. ZHANG S, CHENG XL, LIU X, LI Q, BAI DH, YU GL, HAO JJ. Heterologous expression of glucokinase and establishment of a glucokinase agonist screening system[J]. Chinese Journal of Marine Drugs, 2020, 39(5): 1-8(in Chinese).
    [12] 刘春卯, 罗同阳, 胡美荣, 吴芳彤, 曹倩荣, 郑翔. 诊断试剂用己糖激酶的制备工艺研究[J]. 河北农业大学学报, 2017, 40(1): 66-70, 86. LIU CM, LUO TY, HU MR, WU FT, CAO QR, ZHENG X. Preparation of hexokinase for diagnostic reagents[J]. Journal of Hebei Agricultural University, 2017, 40(1): 66-70, 86(in Chinese).
    [13] ATALAH J, CÁCERES-MORENO P, ESPINA G, BLAMEY JM. Thermophiles and the applications of their enzymes as new biocatalysts[J]. Bioresource Technology, 2019, 280: 478-488.
    [14] SAKURABA H, MITANI Y, GODA S, KAWARABAYASI Y, OHSHIMA T. Cloning, expression, and characterization of the first archaeal ATP-dependent glucokinase from aerobic hyperthermophilic archaeon Aeropyrum pernix[J]. The Journal of Biochemistry, 2003, 133(2): 219-224.
    [15] QIAN Z, ZHAO JJ, BAI X, TONG W, CHEN Z, WEI HF, WANG QH, LIU SQ. Thermal stability of glucokinases in Thermoanaerobacter tengcongensis[J]. BioMed Research International, 2013, 2013: 646539.
    [16] MIYAZONO KI, TABEI N, MORITA S, OHNISHI Y, HORINOUCHI S, TANOKURA M. Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus[J]. Journal of Bacteriology, 2012, 194(3): 607-616.
    [17] NISHIMASU H, FUSHINOBU S, SHOUN H, WAKAGI T. Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii[J]. The Journal of Biological Chemistry, 2007, 282(13): 9923-9931.
    [18] SHAKIR NA, ASLAM M, BIBI T, FALAK S, RASHID N. Functional analyses of a highly thermostable hexokinase from Pyrobaculum calidifontis[J]. Carbohydrate Research, 2023, 523: 108711.
    [19] VERHEES CH, KOOT DGM, ETTEMA TJG, DIJKEMA C, de VOS WM, van der OOST J. Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus[J]. The Biochemical Journal, 2002, 366(Pt 1): 121-127.
    [20] SAMBROOK J, FRITSCH EF, MANIATIS T. Molecular Cloning: a Laboratory Manual[M]. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989: 20-25.
    [21] 刘金香. 人体中镁离子的生理生化功能[J]. 江西教育学院学报(自然科学), 2001, (6): 44-46. LIU JX. Physiological and biochemical function of magnesium ion on human body[J]. Journal of Jiangxi Institute of Education (Natural Sciences), 2001, (6): 44-46(in Chinese).
    [22] KIDO T, TABATA M, TOTANI M, MURACHI T. Enzymatic method for the determination of magnesium in urine using hexokinase or glucokinase and glucose-6-phosphate dehydrogenase[J]. Japanese Journal of Clinical Chemistry, 1986, 15: 146-151.
    [23] BISSWANGER H. Enzyme assays[J]. Perspectives in Science, 2014, 1(1/2/3/4/5/6): 41-55.
    [24] TAYLOR T, DENSON J-P, ESPOSITO D. Optimizing expression and solubility of proteins in E. coli using modified media and induction parameters[J]. Heterologous Gene Expression in E. coli: Methods and Protocols, 2017: 65-82.
    [25] 陈亮, 任随周, 许玫英, 孙国萍. 乳糖替代IPTG诱导脱色酶TpmD基因在大肠杆菌中的高效表达[J]. 微生物学通报, 2009, 36(4): 551-556. CHEN L, REN SZ, XU MY, SUN GP. Over-expression of highly active triphenylmethane dyes decolorization enzyme (TpmD) induced by lactose instead of IPTG in Escherichia coli BL21(DE3)[J]. Microbiology, 2009, 36(4): 551-556(in Chinese).
    [26] OVERTON TW. Recombinant protein production in bacterial hosts[J]. Drug Discovery Today, 2014, 19(5): 590-601.
    [27] KURLAND CG, DONG H. Bacterial growth inhibition by overproduction of protein[J]. Molecular Microbiology, 1996, 21(1): 1-4.
    [28] LEBENDIKER M, DANIELI T. Production of prone-to-aggregate proteins[J]. FEBS Letters, 2014, 588(2): 236-246.
    [29] WOLFE SM, WEISBERGER AS. Protein synthesis by reticulocyte ribosomes, II. The effects of magnesium ion and chloramphenicol on induced protein synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1965, 53(5): 991-998.
    [30] FUJITA T, MATSUKAWA H. Hexokinase obtained from thermophilic yeast Kluyveromyces fragilis 0879659[P/OL]. (1999-07-09) [2024-01-01]. https://www.freepatentsonline.com/5948665.html.
    [31] SOHEI I, SHINYA F, ISSEI Y, etc. Structural Basis for the ADP-Specificity of a Novel Glucokinase from a Hyperthermophilic Archaeon [J]. Structure, 2001, 9(3): 205-214.
    [32] SHINJI K, ISSEI Y, HARUHIKO S, etc. Biochemical Characterization, Cloning, and Sequencing of ADP-Dependent (AMP-Forming) Glucokinase from Two Hyperthermophilic Archaea, Pyrococcus furiosus and Thermococcus litoralis[J]. The Japanese Biochemical Society, 2000, 128(6): 1079-1085.
    [33] 孔董俊, 李玉, 张俊环, 贾红红, 路福平, 杜连祥. 乳糖代替IPTG诱导己糖激酶在大肠杆菌中的表达[J]. 工业微生物, 2011, 41(1): 15-20. KONG DJ, LI Y, ZHANG JH, JIA HH, LU FP, DU LX. Expression of GLK in recombinant strain Escherichia coli BL21(DE3) induced by lactose instead of IPTG[J]. Industrial Microbiology, 2011, 41(1): 15-20(in Chinese).
    [34] 钱忠, 王敬强, 周传奇, 马延和, 刘斯奇. 腾冲嗜热厌氧菌葡萄糖激酶在不同温度下的表达和催化活性[J]. 微生物学报, 2006, 46(2): 243-248. QIAN Z, WANG JQ, ZHOU CQ, MA YH, LIU SQ. Expression and catalysis of glucokinase of Thermoanaerobacter tengcongensis at different temperatures[J]. Acta Microbiologica Sinica, 2006, 46(2): 243-248(in Chinese).
    [35] TRONCOSO-PONCE MA, RIVOAL J, DORION S, MOISAN MC, GARCéS R, MARTíNEZ-FORCE E. Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation[J]. Journal of Plant Physiology, 2011, 168(4): 299-308.
    [36] ARMSTRONG R L,WILSON J E, SHOEMAKER C B. Purification and characterization of the hexokinase from Schistosoma mansoni, expressed in Escherichia coli[J]. Protein Expression and Purification, 1996, 8(3): 374-380.
    [37] CÁCERES AJ, PORTILLO R, ACOSTA H, ROSALES D, QUIÑONES W, AVILAN L, SALAZAR L, DUBOURDIEU M, MICHELS PAM, CONCEPCIÓN JL. Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi[J]. Molecular and Biochemical Parasitology, 2003, 126(2): 251-262.
    [38] PALMA F, LONGHI S, AGOSTINI D, STOCCHI V. One-step purification of a fully active hexahistidine-tagged human hexokinase type I overexpressed in Escherichia coli[J]. Protein Expression and Purification, 2001, 22(1): 38-44.
    [39] MAGNANI PM. Expression, purification, and characterization of a recombinant erythroid-specific hexokinase isozyme[J]. Blood Cells, Molecules, and Diseases, 1998, 24(4): 401-411.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李倩妮,舒泉先,杨小雁,赵运英,周胜虎,邓禹. 高热稳定性己糖激酶在大肠杆菌中的表征和表达优化[J]. 生物工程学报, 2024, 40(9): 3171-3188

复制
分享
文章指标
  • 点击次数:219
  • 下载次数: 564
  • HTML阅读次数: 547
  • 引用次数: 0
历史
  • 收稿日期:2024-01-10
  • 最后修改日期:2024-03-25
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司