谷氨酸棒杆菌乙酰羟酸合酶的高效表达调控及应用
作者:
基金项目:

国家重点研发计划(2021YFC2100900);天津市合成生物技术创新能力提升行动(TSBICIP-CXRC-058)


Efficient expression regulation of acetohydroxyacid synthase for production of branched-chain amino acids in Corynebacterium glutamicum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    谷氨酸棒杆菌是支链氨基酸工业生产的主力菌,乙酰羟酸合酶(acetohydroxyacid synthase, AHAS)是支链氨基酸合成的关键酶,强化AHAS的表达是提高菌种水平的关键手段。然而目前还未实现高效调控AHAS,本研究首先基于前期开发的靶基因表达调控报告系统,从6个组成型强启动子中筛选乙酰羟酸合酶编码基因ilvBN的高效表达启动子,成功获得PgpmA*启动子,表达强度是PilvBN天然启动子的23.3倍。其次,在PgpmA*启动子基础上,构建并通过平板荧光成像初步筛选了3种人工合成核糖体结合位点(ribosome binding site, RBS)文库,发现“R(9)N(6)”为优势的突变文库,通过进一步的孔板复筛,成功获得36个不同的强度增强的RBS突变体,最高强度可达天然启动子PilvBN的62.3倍。最后,选择PgpmA*启动子分别组合3种RBS(野生型、RBS18和RBS36)调控ilvBNS155F的表达生产L-缬氨酸,L-缬氨酸产量随着表达调控元件强度的增强而提高,分别为1.17、1.38、2.29 g/L。在RBS18调控的基础上进一步组合ilvC过表达,L-缬氨酸产量可达7.57g/L。本研究获得的AHAS表达调控元件库,可为改造AHAS生产L-缬氨酸等支链氨基酸提供丰富元件,并为其他关键酶的表达调控提供思路和方法借鉴。

    Abstract:

    Corynebacterium glutamicum is a major workhorse in the industrial production of branched-chain amino acids (BCAAs). The acetohydroxyacid synthase (AHAS) encoded by ilvBN is a key enzyme in the biosynthesis of BCAAs. Enhancing AHAS expression is essential for engineering BCAA producers. However, at present, the available studies only used limited promoters to regulate AHAS expression, which is insufficient for achieving efficient regulation. Herein, we first employed a previously developed reporter system to screen out a strong constitutive promoter PgpmA* from six candidate promoters for expressing ilvBN. PgpmA* showcased the expression strength 23.3-fold that of the native promoter PilvBN. Moreover, three synthetic RBS libraries based on the promoter PgpmA* were constructed and evaluated by plate fluorescence imaging. The results revealed that “R(9)N(6)” was the best mutant library. A total of 36 RBS mutants with enhanced strength were further screened by evaluation in 96-deep-well plates, and the highest strength reached up to 62.3-fold that of PilvBN. Finally, the promoter PgpmA* was combined with three RBS mutants (WT, RBS18, and RBS36) to fine-tune the expression of ilvBNS155F for L-valine biosynthesis, respectively. Increased expression strength led to enhanced L-valine production, with titers of 1.17, 1.38, and 2.29 g/L, respectively. The combination of RBS18 strain with the further overexpression of ilvC produced 7.57 g/L L-valine. The regulatory elements obtained in this study can be utilized to modulate AHAS expression for BCAA production in C. glutamicum. Additionally, this strategy can guide the efficient expression regulation of other key enzymes.

    参考文献
    [1] LEE JY, NA YA, KIM E, LEE HS, KIM P. The actinobacterium Corynebacterium glutamicum, an industrial workhorse[J]. Journal of Microbiology and Biotechnology, 2016, 26(5): 807-822.
    [2] WOO HM, PARK JB. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum[J]. Journal of Biotechnology, 2014, 180: 43-51.
    [3] WENDISCH VF, JORGE JMP, PÉREZ-GARCÍA F, SGOBBA E. Updates on industrial production of amino acids using Corynebacterium glutamicum[J]. World Journal of Microbiology and Biotechnology, 2016, 32(6): 105.
    [4] SHENG Q, WU XY, XU XY, TAN XM, LI ZM, ZHANG B. Production of L-glutamate family amino acids in Corynebacterium glutamicum: physiological mechanism, genetic modulation, and prospects[J]. Synthetic and Systems Biotechnology, 2021, 6(4): 302-325.
    [5] LIU J, XU JZ, RAO ZM, ZHANG WG. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects[J]. Microbiological Research, 2022, 262: 127101.
    [6] YU SZ, ZHENG B, CHEN ZY, HUO YX. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids[J]. Microbial Cell Factories, 2021, 20(1): 230.
    [7] BECKER J, ROHLES CM, WITTMANN C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products[J]. Metabolic Engineering, 2018, 50: 122-141.
    [8] BARITUGO KA, KIM HT, DAVID Y, CHOI JI, HONG SH, JEONG KJ, CHOI JH, JOO JC, PARK SJ. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery[J]. Applied Microbiology and Biotechnology, 2018, 102(9): 3915-3937.
    [9] KOGURE T, INUI M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products[J]. Applied Microbiology and Biotechnology, 2018, 102(20): 8685-8705.
    [10] ZHAO NN, QIAN L, LUO GJ, ZHENG SP. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9517-9529.
    [11] ZHA J, ZHAO Z, XIAO ZY, ENG T, MUKHOPADHYAY A, KOFFAS MA, TANG YJ. Biosystem design of Corynebacterium glutamicum for bioproduction[J]. Current Opinion in Biotechnology, 2023, 79: 102870.
    [12] PARK JH, LEE SY. Fermentative production of branched chain amino acids: a focus on metabolic engineering[J]. Applied Microbiology and Biotechnology, 2010, 85(3): 491-506.
    [13] XU JZ, RUAN HZ, YU HB, LIU LM, ZHANG WG. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar[J]. Microbial Cell Factories, 2020, 19(1): 39.
    [14] 赵阔, 程金宇, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 柳亚迪, 刘立明, 陈修来. 谷氨酸棒杆菌代谢工程高效生产L-缬氨酸[J]. 生物工程学报, 2023, 39(8): 3253-3272. ZHAO K, CHENG JY, GUO L, GAO C, SONG W, WU J, LIU J, LIU YD, LIU LM, CHEN XL. Highly efficient production of L-valine by multiplex metabolic engineering of Corynebacterium glutamicum[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3253-3272(in Chinese).
    [15] WANG YY, XU JZ, JIN ZY, XIA XL, ZHANG WG. Improvement of acetyl-CoA supply and glucose utilization increases L-leucine production in Corynebacterium glutamicum[J]. Biotechnology Journal, 2022, 17(8): e2100349.
    [16] XIONG HB, LIU YP, XU QY. Effect of sodium dodecyl sulfate on the production of L-isoleucine by the fermentation of Corynebacterium glutamicum[J]. Bioengineered, 2020, 11(1): 1124-1136.
    [17] AMORIM FRANCO TM, BLANCHARD JS. Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability[J]. Biochemistry, 2017, 56(44): 5849-5865.
    [18] LIANG YF, LONG ZX, ZHANG YJ, LUO CY, YAN LT, GAO WY, LI H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications[J]. Biochimie, 2021, 184: 72-87.
    [19] MORBACH S, JUNGER C, SAHM H, EGGELING L. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site[J]. Journal of Bioscience and Bioengineering, 2000, 90(5): 501-507.
    [20] PFEIFER-SANCAR K, MENTZ A, RÜCKERT C, KALINOWSKI J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique[J]. BMC Genomics, 2013, 14: 888
    [21] WANG YY, SHI K, CHEN PD, ZHANG F, XU JZ, ZHANG WG. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(6): 485-495.
    [22] ZHANG YC, LIU YD, ZHANG SY, MA WJ, WANG JL, YIN LH, WANG XY. Metabolic engineering of Corynebacterium glutamicum WM001 to improve L-isoleucine production[J]. Biotechnology and Applied Biochemistry, 2021, 68(3): 568-584.
    [23] LIU J, LIU MS, SHI T, SUN GN, GAO N, ZHAO XJ, GUO X, NI XM, YUAN QQ, FENG JH, LIU ZM, GUO YM, CHEN JZ, WANG Y, ZHENG P, SUN JB. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction[J]. Nature Communications, 2022, 13: 891.
    [24] 张悦, 张继伟, 吴硕, 徐宁, 刘君, 魏亮. 谷氨酸棒杆菌人工核糖体结合位点(RBS)文库的建立与应用[J]. 食品与发酵工业, 2023, 49(23): 25-32. ZHANG Y, ZHANG JW, WU S, XU N, LIU J, WEI L. Construction and application of an artificial ribosomal binding site (RBS) library in Corynebacterium glutamicum[J]. Food and Fermentation Industries, 2023, 49(23): 25-32(in Chinese).
    [25] 刘莫识, 刘娇, 孙冠男, 路福平, 王钰, 郑平, 孙际宾. 谷氨酸棒杆菌人工合成启动子文库的构建及应用[J]. 生物工程学报, 2022, 38(2): 831-842. LIU MS, LIU J, SUN GN, LU FP, WANG Y, ZHENG P, SUN JB. Construction and application of a synthetic promoter library for Corynebacterium glutamicum[J]. Chinese Journal of Biotechnology, 2022, 38(2): 831-842(in Chinese).
    [26] WANG Y, CHENG HJ, LIU Y, LIU Y, WEN X, ZHANG K, NI XM, GAO N, FAN LW, ZHANG ZH, LIU J, CHEN JZ, WANG LX, GUO YM, ZHENG P, WANG M, SUN JB, MA YH. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing[J]. Nature Communications, 2021, 12: 678.
    [27] KIM GY, KIM J, PARK G, KIM HJ, YANG JN, SEO SW. Synthetic biology tools for engineering Corynebacterium glutamicum[J]. Computational and Structural Biotechnology Journal, 2023, 21: 1955-1965.
    [28] MÜLLER C, BAKKES PJ, LENZ P, WAFFENSCHMIDT V, HELLECKES LM, JAEGER KE, WIECHERT W, KNAPP A, FREUDL R, OLDIGES M. Accelerated strain construction and characterization of C. glutamicum protein secretion by laboratory automation[J]. Applied Microbiology and Biotechnology, 2022, 106(12): 4481-4497.
    [29] STELLA RG, GERTZEN CGW, SMITS SHJ, GÁTGENS C, POLEN T, NOACK S, FRUNZKE J. Biosensor-based growth-coupling and spatial separation as an evolution strategy to improve small molecule production of Corynebacterium glutamicum[J]. Metabolic Engineering, 2021, 68: 162-173.
    [30] YIN LH, HU XQ, XU DQ, NING JF, CHEN J, WANG XY. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum[J]. Metabolic Engineering, 2012, 14(5): 542-550.
    [31] WEI L, ZHAO JH, WANG YR, GAO JS, DU MH, ZHANG Y, XU N, DU HM, JU JS, LIU QD, LIU J. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control[J]. Metabolic Engineering, 2022, 69: 134-146.
    [32] ZHANG B, ZHOU N, LIU YM, LIU C, LOU CB, JIANG CY, LIU SJ. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum[J]. Microbial Cell Factories, 2015, 14(1): 71
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

乔倩倩,宁舒展,王瑞瑞,郑宇,路福平,陈久洲,刘娇,郑平. 谷氨酸棒杆菌乙酰羟酸合酶的高效表达调控及应用[J]. 生物工程学报, 2024, 40(9): 3114-3126

复制
分享
文章指标
  • 点击次数:327
  • 下载次数: 703
  • HTML阅读次数: 499
  • 引用次数: 0
历史
  • 收稿日期:2024-03-16
  • 最后修改日期:2024-05-20
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6022195位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司