天然紫外吸收剂gadusol在毕赤酵母中的生物合成及其性能分析
作者:
基金项目:

国家自然科学基金(31771963)


Synthesis and properties of the natural ultraviolet absorber gadusol in Komagataella phaffii
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Gadusol是一种具有抗氧化能力的高效天然紫外吸收物质,广泛存在于微生物、藻类及鱼卵等水生生物中。为解决其天然提取量低且环境不友好等问题,本研究将斑马鱼来源的gadusol合成途径引入毕赤酵母,成功构建了能够合成gadusol的重组毕赤酵母,进一步过表达了来源于树干毕赤酵母的木糖同化基因以提高其关键底物景天庚酮糖-7-磷酸的含量。结果表明木糖的利用是提高gadusol产量的有效策略,在纯木糖培养基中,gadusol的产量达到141.8 mg/L (32.3 mg/g 细胞干重),约是在纯葡萄糖培养基中的46倍。产物在275-305 nm范围内存在明显吸收,λmax=290 nm。同时,该物质具有一定的抗氧化能力,在反应5 h后,铁离子还原抗氧化能力(ferric ion reducing antioxidant power, FRAP)、2,2′-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐[2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS]和1,1-二苯基-2-苦基肼自由基(1,1-diphenyl-2-picrylhydrazyl, DPPH)结果分别出现了90.83%、25.50%和131.80%的变化率,推测其可能作为一种长效的抗氧化剂。本研究证明了毕赤酵母作为底盘生物合成天然紫外吸收剂的巨大潜能,生物合成的gadusol具有良好的紫外吸收与抗氧化性能,为gadusol的工业化生产及应用提供了理论基础。

    Abstract:

    Gadusol, an efficient natural ultraviolet (UV) absorbing substance with antioxidant capacity, is ubiquitous in aquatic organisms such as microorganisms, algae, and fish eggs. In order to address issues such as its low natural extraction yield and environmental unfriendliness, we introduced the gadusol synthesis pathway from zebrafish into Komagataella phaffii and successfully constructed the recombinant strain capable of synthesizing gadusol. The xylose assimilation genes derived from Scheffersomyces stipitis were further introduced into the recombinant strain to increase the content of the key substrate sedoheptulose 7-phosphate (S7P). The results showed that the utilization of xylose was an effective strategy to increase the yield of gadusol. In the medium with only xylose as the substrate, the yield of gadusol reached 141.8 mg/L (32.3 mg/g dry cell weight, DCW), which was about 46 times of that in the medium with only glucose as the substrate. The product showed obvious absorption in the range of 275–305 nm, with the maximum absorption at 290 nm. Moreover, the product demonstrated antioxidant capacity. After reaction for 5 h, the ferric ion reducing antioxidant power (FRAP), 2,2′-azino- bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rates changed by 90.83%, 25.50%, and 131.80%, respectively, which suggested that the product may be used as a long-acting antioxidant. This study demonstrated the great potential of K. phaffii as a chassis for the biosynthesis of natural UV absorbers. The biosynthesized gadusol has good UV absorption and antioxidant properties, which provides a theoretical basis for the industrial production and application of gadusol.

    参考文献
    [1] LOSANTOS R, CHURIO MS, SAMPEDRO D. Computational exploration of the photoprotective potential of gadusol[J]. ChemistryOpen, 2015, 4(2): 155-160.
    [2] OSBORN AR, ALMABRUK KH, HOLZWARTH G, ASAMIZU S, LADU J, KEAN KM, KARPLUS PA, TANGUAY RL, BAKALINSKY AT, MAHMUD T. De novo synthesis of a sunscreen compound in vertebrates[J]. eLife, 2015, 4: e05919.
    [3] PLACK PA, FRASER NW, GRANT PT, MIDDLETON C, MITCHELL AI, THOMSON RH. Gadusol, an enolic derivative of cyclohexane-1,3-dione present in the roes of cod and other marine fish. isolation, properties and occurrence compared with ascorbic acid[J]. The Biochemical Journal, 1981, 199(3): 741-747.
    [4] ORALLO DE, LORES NJ, ARBELOA EM, BERTOLOTTI SG, CHURIO MS. Sensitized photo-oxidation of gadusol species mediated by singlet oxygen[J]. Journal of Photochemistry and Photobiology B: Biology, 2020, 213: 112078.
    [5] RICE MC, LITTLE JH, FORRISTER DL, MACHADO J, CLARK NL, GAGNON JA. Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage[J]. bioRxiv: the Preprint Server for Biology, 2023: 33(15): 3229-3237.
    [6] 顾智强, 张振华, 徐琰雯, 顾梦娇, 徐强, 朱自强, 钟伯坚. 南极绿藻中类菌胞素氨基酸对UV-B胁迫的响应[J]. 海洋科学, 2018, 42(12): 37-46. GU ZQ, ZHANG ZH, XU YW, GU MJ, XU Q, ZHU ZQ, ZHONG BJ. Study of response of mycosporine-like amino acids in Antarctic green algae to UV-B radiation[J]. Marine Sciences, 2018, 42(12): 37-46(in Chinese).
    [7] 陈小兰, 邓国宾, 刘开庆, 陈善娜. 水生生物的紫外光防护剂: 类菌胞素氨基酸[J]. 植物学通报, 2006, 23(1): 78-86. CHEN XL, DENG GB, LIU KQ, CHEN SN. UV-protective metabolites in aquatic organisms: mycosporine-like amino acids[J]. Chinese Bulletin of Botany, 2006, 23(1): 78-86(in Chinese).
    [8] ARBELOA EM, UEZ MJ, BERTOLOTTI SG, CHURIO MS. Antioxidant activity of gadusol and occurrence in fish roes from Argentine Sea[J]. Food Chemistry, 2010, 119(2): 586-591.
    [9] DUNLAP WC, YAMAMOTO Y. Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1995, 112(1): 105-114.
    [10] DAHMS HU, LEE JS. UV radiation in marine ectotherms: molecular effects and responses[J]. Aquatic Toxicology, 2010, 97(1): 3-14.
    [11] GUEDES M, GONÇALVES VMF, TIRITAN ME, REIS RL, FERREIRA H, NEVES NM. Aqueous extracts of fish roe as a source of several bioactive compounds[J]. Separations, 2022, 9(8): 210.
    [12] 伍小艺, 王金晶, 余施雨, 易崇华, 周庭安, 李崎, 钮成拓, 郑飞云, 刘春凤, 许鑫. 一种具有强化防晒效果的酿酒酵母及其应用: CN114621883B[P]. 2023-08-25. WU XY, WANG JJ, YU SY, YI CH, ZHOU TA, LI Q, NIU CT, ZHENG FY, LIU CF, XU X. Saccharomyces cerevisiae with enhanced sunscreen effect and application of Saccharomyces cerevisiae: CN114621883B[P]. 2023-08-25(in Chinese).
    [13] 钱芷兰, 宋丽丽, 刘启, 龚秀龙, 康艺嘉, 何子雨, 龙浩雨, 蔡孟浩. 非常规酵母天然产物合成[J]. 生物工程学报, 2023, 39(6): 2284-2312. QIAN ZL, SONG LL, LIU Q, GONG XL, KANG YJ, HE ZY, LONG HY, CAI MH. Biosynthesis of natural products by non-conventional yeasts[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2284-2312(in Chinese).
    [14] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物的研究进展[J]. 广西师范大学学报(自然科学版), 2023: 1-13. AI CC, GONG GL, JIAO XY, TIAN L, GAI ZC, GOU JX, LI H. Komagataella phaffii serves as a model organism for emerging basic research[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023: 1-13(in Chinese).
    [15] GAO JC, JIANG LH, LIAN JZ. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synthetic and Systems Biotechnology, 2021, 6(2): 110-119.
    [16] 刘冰, 黄志强, 郑潇, 张建国. 毕赤酵母外源蛋白分泌途径的研究进展[J]. 微生物学杂志, 2019, 39(4): 83-90. LIU B, HUANG ZQ, ZHENG X, ZHANG JG. Advances in heterologous protein secretory pathway from Komagataella phaffii[J]. Journal of Microbiology, 2019, 39(4): 83-90(in Chinese).
    [17] JIAO X, GU YH, ZHOU PP, YU HW, YE LD. Recent advances in construction and regulation of yeast cell factories[J]. World Journal of Microbiology and Biotechnology, 2022, 38(4): 57.
    [18] 高月红, 郑建普, 朱春赟, 李亚娟, 可燕, 卞卡. 抗氧化能力检测方法评估及微型化[J]. 中国药学杂志, 2008, 43(24): 1863-1867. GAO YH, ZHENG JP, ZHU CY, LI YJ, KE Y, BIAN K. Evaluation and miniaturization for antioxidant capacity measurement[J]. Chinese Pharmaceutical Journal, 2008, 43(24): 1863-1867(in Chinese).
    [19] BUENO-PEREIRA TO, BERTOZZI-MATHEUS M, ZAMPIERI GM, ABBADE JF, CAVALLI RC, NUNES PR, SANDRIM VC. Markers of endothelial dysfunction are attenuated by resveratrol in preeclampsia[J]. Antioxidants, 2022, 11(11): 2111.
    [20] 王荣, 罗倩, 冯怡. DPPH、ABTS和FRAP微量法测定山奈酚的抗氧化能力[J]. 广州化工, 2021, 49(3): 58-59, 63. WANG R, LUO Q, FENG Y. Determination of antioxidant effects of kaempferol by micro-model of DPPH, ABTS and FRAP assay[J]. Guangzhou Chemical Industry, 2021, 49(3): 58-59, 63(in Chinese).
    [21] 曾维才, 石碧. 天然产物抗氧化活性的常见评价方法[J]. 化工进展, 2013, 32(6): 1205-1213, 1247. ZENG WC, SHI B. Common methods of antioxidant activity evaluation for natural products: a review[J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1205-1213, 1247(in Chinese).
    [22] 曹喜生. 木酮糖激酶基因表达载体构建及在酿酒酵母中的超表达[D]. 哈尔滨: 黑龙江大学硕士学位论文, 2009. CAO XS. Construction of xylulose kinase gene expression vector and its overexpression in Saccharomyces cerevisiae[D]. Harbin: Master’s Thesis of Helongjiang University, 2009(in Chinese).
    [23] 林恋竹, 赵谋明. 反应时间对DPPH?法、ABTS+?法评价抗氧化性结果的影响[J]. 食品科学, 2010, 31(5): 63-67. LIN LZ, ZHAO MM. Effect of reaction time on DPPH and ABTS+ radical scavenging assays for antioxidant capacity evaluation[J]. Food Science, 2010, 31(5): 63-67(in Chinese).
    [24] 王平, 毕志刚. UVB诱发皮肤癌的分子机制研究进展[J]. 国外医学皮肤性病学分册, 2005, 31(1): 44-46. WANG P, BI ZG. Research progress on molecular mechanism of UVB-induced skin cancer[J]. International Journal of Dermatology and Venereology, 2005, 31(1): 44-46(in Chinese).
    [25] HILLE-REHFELD A. Gadusol, ein hochwirksamer biogener UV-schutz[J]. Chemie in Unserer Zeit, 2015, 49(5): 290.
    [26] LOSANTOS R, SAMPEDRO D, CHURIO MS. Photochemistry and photophysics of mycosporine-like amino acids and gadusols, nature’s ultraviolet screens[J]. Pure and Applied Chemistry, 2015, 87(9/10): 979-996.
    [27] 王明, 栾韬, 赵建志, 李洪兴, 鲍晓明. 酿酒酵母转化木糖生产化学品的研究进展[J]. 生物工程学报, 2021, 37(3): 1042-1057. WANG M, LUAN T, ZHAO JZ, LI HX, BAO XM. Progress in studies on production of chemicals from xylose by Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2021, 37(3): 1042-1057(in Chinese).
    [28] KWAK S, JO JH, YUN EJ, JIN YS, SEO JH. Production of biofuels and chemicals from xylose using native and engineered yeast strains[J]. Biotechnology Advances, 2019, 37(2): 271-283.
    [29] FIAUX J, ÇAKAR ZP, SONDEREGGER M, WÜTHRICH K, SZYPERSKI T, SAUER U. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis[J]. Eukaryotic Cell, 2003, 2(1): 170-180.
    [30] PARK SH, LEE K, JANG JW, HAHN JS. Metabolic engineering of Saccharomyces cerevisiae for production of shinorine, a sunscreen material, from xylose[J]. ACS Synthetic Biology, 2019, 8(2): 346-357.
    [31] KIM SR, CHA M, KIM T, SONG S, KANG HJ, JUNG Y, CHO JY, MOH SH, KIM SJ. Sustainable production of shinorine from lignocellulosic biomass by metabolically engineered Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2022, 70(50): 15848-15858.
    [32] JIN H, KIM S, LEE D, LEDESMA-AMARO R, HAHN JS. Efficient production of mycosporine-like amino acids, natural sunscreens, in Yarrowia lipolytica[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 162.
    [33] 沈煜. 木酮糖激酶对酿酒酵母代谢工程菌木糖利用的影响及木糖异构酶基因的胞外表达[D]. 济南: 山东大学博士学位论文, 2005. SHEN Y. Effect of xylulokinase in Sacchaomyces cerevisiae xylose catabolism and expression of xylose isomeras gene outside the cells[D]. Jinan: Doctoral Dissertation of Shandong University, 2005(in Chinese).
    [34] MISHRA AK, MISHRA A, CHATTOPADHYAY P. Herbal cosmeceuticals for photoprotection from ultraviolet B radiation: a review[J]. Tropical Journal of Pharmaceutical Research, 2011, 10(3): 351-360.
    [35] D’ORAZIO J, JARRETT S, AMARO-ORTIZ A, SCOTT T. UV radiation and the skin[J]. International Journal of Molecular Sciences, 2013, 14(6): 12222-12248.
    [36] SHICK JM, DUNLAP WC. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms[J]. Annual Review of Physiology, 2002, 64: 223-262.
    [37] 闫峻, 顾娟, 冯硕, 姬瑞芳, 全庆华, 刘永刚. 大青叶化学成分及抗氧化活性研究[J]. 质谱学报, 2019, 40(4): 381-390. YAN J, GU J, FENG S, JI RF, QUAN QH, LIU YG. Study of chemical constituents and antioxidant activity of isatidis folium[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(4): 381-390(in Chinese).
    [38] GULCIN i. Antioxidants and antioxidant methods: an updated overview[J]. Archives of Toxicology, 2020, 94(3): 651-715.
    [39] KAVIARASAN S, NAIK GH, GANGABHAGIRATHI R, ANURADHA CV, PRIYADARSINI KI. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds[J]. Food Chemistry, 2007, 103(1): 31-37.
    [40] KÖKSAL E, GÜLÇIN I, BEYZA S, SARIKAYA Ö, BURSAL E. In vitro antioxidant activity of silymarin[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24(2): 395-405.
    [41] PRIOR RL, WU XL, SCHAICH K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 4290-4302.
    [42] ARBELOA EM, LUJÁN RAMÍREZ C, ARIEL PROCACCINI R, CHURIO MS. Electrochemical characterization of the marine antioxidant gadusol[J]. Natural Product Communications, 2012, 7(9): 1211-1214.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

易崇华,钱思雨,钮成拓,郑飞云,刘春凤,李崎,王金晶. 天然紫外吸收剂gadusol在毕赤酵母中的生物合成及其性能分析[J]. 生物工程学报, 2024, 40(9): 3039-3056

复制
分享
文章指标
  • 点击次数:213
  • 下载次数: 856
  • HTML阅读次数: 562
  • 引用次数: 0
历史
  • 收稿日期:2023-12-26
  • 最后修改日期:2024-04-12
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6290779位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司