基于CRISPR/Cas9和紫外诱变构建高产小牛胰凝乳酶的多拷贝乳酸克鲁维酵母
作者:
基金项目:

国家重点研发计划(2021YFC2102700);国家自然科学基金(22377040)


Construction of a Kluyveromyces lactis strain with multi-copy integration for enhanced bovine chymosin production by CRISPR/Cas9 and UV mutagenesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    小牛胰凝乳酶(bovine chymosin)作为重要的食品酶,广泛应用于乳制品行业中奶酪的生产制造。本研究将密码子优化后的小牛胰凝乳酶酶原基因作为目的基因,构建了分泌表达框,通过基因组整合至乳酸克鲁维酵母(Kluyveromyces lactis),单拷贝菌株的摇瓶发酵活力达到了40 U/mL;基于单拷贝菌株,采用CRISPR/Cas9技术敲除筛选基因amdS,构建了多拷贝整合菌株,双拷贝和三拷贝整合菌株的摇瓶发酵活力分别增加到70 U/mL和78 U/mL。基于双拷贝整合菌株KLUcymD,采用紫外诱变育种技术,在多轮诱变育种后筛选得到一株高产小牛胰凝乳酶的重组菌株KLUcymD-M2,摇瓶发酵酶活力达到270 U/mL;5 L罐中发酵76 h,酶活力达到最高值600 U/mL。综上,本研究成功构建了一株高产小牛胰凝乳酶的乳酸克鲁维酵母重组菌株,为进一步工业化放大生产奠定了基础。

    Abstract:

    Bovine chymosin is an essential food enzyme widely used in cheese production in the dairy industry. This study used a codon-optimized prochymosin gene to construct an expression cassette for extracellular expression of bovine chymosin in Kluyveromyces lactis. After integration of the prochymosin gene into the host cell genome, the single-copy integration strain KLUcym showed the clotting activity of 40 U/mL in a shake flask. The CRISPR/Cas9 system was employed to delete amdS and construct the double-copy integration strain and triple-copy integration strain, which achieved the clotting activities of 70 U/mL and 78 U/mL in shake flasks, separately. Subsequently, multiple rounds of UV mutagenesis were performed on the double-copy strain KLUcymD, and a recombinant K. lactis strain with a high yield of bovine chymosin was obtained. This strain achieved the clotting activity of 270 U/mL in a shake flask and 600 U/mL in a 5 L bioreactor after 76 h. In summary, we construct a strain KLUcymD-M2 for high production of bovine chymosin, which lays a foundation of industrial fermentation.

    参考文献
    [1] GILLILAND GL, WINBORNE EL, NACHMAN J, WLODAWER A. The three-dimensional structure of recombinant bovine chymosin at 2.3Á resolution[J]. Proteins: Structure, Function, and Bioinformatics, 1990, 8(1): 82-101.
    [2] BARKHOLT PEDERSEN V, ASBEK CHRISTENSEN K, FOLTMANN B. Investigations on the activation of bovine prochymosin[J]. European Journal of Biochemistry, 1979, 94(2): 573-580.
    [3] VALLEJO JA, AGEITOS JM, POZA M, VILLA TG. Cloning and expression of buffalo active chymosin in Pichia pastoris[J]. Journal of Agricultural and Food Chemistry, 2008, 56(22): 10606-10610.
    [4] CHOCKCHAISAWASDEE S, ATHANASOPOULOS VI, NIRANJAN K, RASTALL RA. Synthesis of galacto-oligosaccharide from lactose using beta-galactosidase from Kluyveromyces lactis: studies on batch and continuous UF membrane-fitted bioreactors[J]. Biotechnology and Bioengineering, 2005, 89(4): 434-443.
    [5] ESTEBAN PF, VAZQUEZ de ALDANA CR, del REY F. Cloning and characterization of 1,3-beta-glucanase- encoding genes from non-conventional yeasts[J]. Yeast, 1999, 15(2): 91-109.
    [6] van DEN BERG JA, van der LAKEN KJ, van OOYEN AJ, RENNIERS TC, RIETVELD K, SCHAAP A, BRAKE AJ, BISHOP RJ, SCHULTZ K, MOYER D. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin[J]. Bio/Technology (Nature Publishing Company), 1990, 8(2): 135-139.
    [7] QIU YB, LEI P, WANG R, SUN L, LUO ZS, LI S, XU H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: from bio-functional design to applications[J]. Biotechnology Advances, 2023, 64: 108125.
    [8] WAGNER JM, ALPER HS. Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances[J]. Fungal Genetics and Biology: FG & B, 2016, 89: 126-136.
    [9] YUN CR, KONG JN, CHUNG JH, KIM MC, KONG KH. Improved secretory production of the sweet-tasting protein, brazzein, in Kluyveromyces lactis[J]. Journal of Agricultural and Food Chemistry, 2016, 64(32): 6312-6316.
    [10] SPOHNER SC, SCHAUM V, QUITMANN H, CZERMAK P. Kluyveromyces lactis: an emerging tool in biotechnology[J]. Journal of Biotechnology, 2016, 222: 104-116.
    [11] MADHAVAN A, SUKUMARAN RK. Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis[J]. Bioresource Technology, 2014, 165: 302-308.
    [12] SAKHTAH H, BEHLER J, ALI-REYNOLDS A, CAUSEY TB, VAINAUSKAS S, TARON CH. A novel regulated hybrid promoter that permits autoinduction of heterologous protein expression in Kluyveromyces lactis[J]. Applied and Environmental Microbiology, 2019, 85(14): e00542-e00519.
    [13] SALIOLA M, MAZZONI C, SOLIMANDO N, CRISÁ A, FALCONE C, JUNG G, FLEER R. Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis[J]. Applied and Environmental Microbiology, 1999, 65(1): 53-60.
    [14] ZIOGIENE D, VALAVICIUTE M, NORKIENE M, TIMINSKAS A, GEDVILAITE A. Mutations of Kluyveromyces lactis dolichol kinase enhances secretion of recombinant proteins[J]. FEMS Yeast Research, 2019, 19(3): foz024.
    [15] ZHAO XL, HUSSAIN MH, MOHSIN A, LIU ZB, XU ZX, LI ZX, GUO WQ, GUO MJ. Mechanistic insight for improving butenyl-spinosyn production through combined ARTP/UV mutagenesis and ribosome engineering in Saccharopolyspora pogona[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1329859.
    [16] 冯镇, 张兰威. 小牛凝乳酶原基因在乳酸克鲁维酵母中的表达及遗传稳定性研究[J]. 食品科学, 2008, 29(7): 297-302. FENG Z, ZHANG LW. Study on expression of prochymosin in Kluyveromyces lactis and genetic stability[J]. Food Science, 2008, 29(7): 297-302(in Chinese).
    [17] 袁伟. 牛凝乳酶原基因的定点突变与酶性质研究[D]. 新乡: 河南师范大学硕士学位论文, 2011. YUAN W. Site-directed mutagenesis of gene encoding bovine prochymosin and theirs enzymatic properties[D]. Xinxiang: Master’s Thesis of Henan Normal University, 2011(in Chinese).
    [18] 徐龙龙. 重组乳酸克鲁维酵母发酵制取牛凝乳酶[D]. 南阳: 南阳师范学院硕士学位论文, 2017. XU LL. Fermentation preparation of bovine chymosin by recombinant Kluyveromyces lactis[D]. Nanyang: Master’s Thesis of Nanyang Normal University, 2017(in Chinese).
    [19] CANDIOTI MC, HYNES E, PEROTTI M, ZALAZAR CA. Proteolytic activity of commercial rennets and pure enzymes on whey proteins[J]. Milchwissenschaft, 2002, 57(9): 546-550.
    [20] STEENSELS J, SNOEK T, MEERSMAN E, NICOLINO MP, VOORDECKERS K, VERSTREPEN KJ. Improving industrial yeast strains: exploiting natural and artificial diversity[J]. FEMS Microbiology Reviews, 2014, 38(5): 947-995.
    [21] YAMADA R, KASHIHARA T, OGINO H. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis[J]. World Journal of Microbiology and Biotechnology, 2017, 33(5): 99.
    [22] WU PP, ZHOU JG, YU Y, LU H. Characterization of essential elements for improved episomal expressions in Kluyveromyces marxianus[J]. Biotechnology Journal, 2022, 17(4): 2100382.
    [23] ARIMA K, YU J, IWASAKI S. Milk-clotting enzyme from Mucor pusillus var. Lindt[M]//PERLMAN GE, LORAND L. Methods in Enzymology: Vol 19. New York and London: Academic Press, 1970: 446-459.
    [24] XIAO CF, XUE SL, PAN YY, LIU XF, HUANG MT. Overexpression of genes by stress-responsive promoters increases protein secretion in Saccharomyces cerevisiae[J]. World Journal of Microbiology and Biotechnology, 2023, 39(8): 203.
    [25] XUE SL, LIU XF, PAN YY, XIAO CF, FENG YZ, ZHENG L, ZHAO MM, HUANG MT. Comprehensive analysis of signal peptides in Saccharomyces cerevisiae reveals features for efficient secretion[J]. Advanced Science, 2023, 10(2): 2203433.
    [26] WENTZ AE, SHUSTA EV. Enhanced secretion of heterologous proteins from yeast by overexpression of ribosomal subunit RPP0[J]. Biotechnology Progress, 2008, 24(3): 748-756.
    [27] ZHENG J, GUO N, ZHOU HB. A simple strategy for the generation of multi-copy Pichia pastoris with the efficient expression of mannanase[J]. Journal of Basic Microbiology, 2014, 54(12): 1410-1416.
    [28] LIU Y, ZHU XQ, LI WD, WEN H, LIU CS. Enhancing ergosterol production in Pichia pastoris GS115 by overexpressing squalene synthase gene from Glycyrrhiza uralensis[J]. Chinese Journal of Natural Medicines, 2015, 13(5): 338-345.
    [29] LI YL, XIAO CF, PAN YY, QIN L, ZHENG L, ZHAO MM, HUANG MT. Optimization of protein folding for improved secretion of human serum albumin fusion proteins in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2023, 71(47): 18414-18423.
    [30] NACKEN V, ACHSTETTER T, DEGRYSE E. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae[J]. Gene, 1996, 175(1/2): 253-260.
    [31] YAMADA R, TANAKA T, OGINO C, KONDO A. Gene copy number and polyploidy on products formation in yeast[J]. Applied Microbiology and Biotechnology, 2010, 88(4): 849-857.
    [32] ZHANG SY, FENG Z, ZENG QM, ZENG JH, LIU HJ, DENG P, LI SY, LI N, WANG JQ. Enhancing pullulan production in Aureobasidium pullulans through UV mutagenesis breeding and high-throughput screening system[J]. Fermentation-Basel, 2024, 10(2): 103.
    [33] BAO JC, HUANG MT, PETRANOVIC D, NIELSEN J. Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast[J]. Amb Express, 2018, 8(1): 37.
    [34] YODA K, NODA Y. Vesicular transport and the Golgi apparatus in yeast[J]. Journal of Bioscience and Bioengineering, 2001, 91(1): 1-11.
    [35] DAMASCENO LM, HUANG CJ, BATT CA. Protein secretion in Pichia pastoris and advances in protein production[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 31-39.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋悦辰,周婕妤,倪晔. 基于CRISPR/Cas9和紫外诱变构建高产小牛胰凝乳酶的多拷贝乳酸克鲁维酵母[J]. 生物工程学报, 2024, 40(9): 2983-2997

复制
分享
文章指标
  • 点击次数:179
  • 下载次数: 666
  • HTML阅读次数: 538
  • 引用次数: 0
历史
  • 收稿日期:2024-03-04
  • 最后修改日期:2024-04-11
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6009735位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司