工程微藻的生物安全风险、管控及生物封存
作者:
基金项目:

国家重点研发计划(2018YFA0903000, 2019YFA0904600);国家自然科学基金(32270091)


Biosafety risks, control, and biocontainment of engineered microalgae
Author:
  • WANG Jin

    WANG Jin

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Xinyu

    SONG Xinyu

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Lei

    CHEN Lei

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Weiwen

    ZHANG Weiwen

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [159]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微藻具备利用太阳能固定CO2并转化为有机物的能力,已成为有前途的绿色细胞工厂。随着生物技术快速发展,前沿生物技术在光合微藻中的研究与应用不断拓展,对微藻的工程改造日益全面和深入,比如通过合成生物学和基因组编辑技术对微藻进行工程改造,使其有潜力应用于医学、农业、食品、能源、环境等领域。然而,与此同时,工程微藻在环境中存活和扩散的风险也随之增加,给生态环境和人类健康带来潜在安全风险。为避免其在环境中扩散对生态环境和人体健康造成生物安全风险,需要强化工程微藻生物安全风险管控政策,并针对其开发生物风险防控技术。为了实现这一目标,研究人员开发了生物封存系统(biocontainment),包括利用有毒蛋白设计杀伤开关等主动策略和敲除必需基因制造营养缺陷型菌株等被动策略,对工程微藻进行空间上的封存。本文对近几年前沿生物技术在微藻生物工程领域的应用、工程微藻逃逸的生物安全风险和管理规范以及工程微藻中建立的多种新型生物封存技术的研究进展进行了总结和评述,最后对微藻生物封存领域的未来发展方向进行了展望。

    Abstract:

    Microalgae, with the ability to harness solar energy to fix CO2 and convert it into organic compounds, have emerged as promising green cell factories. With the rapid development of cutting-edge biotechnologies, the research and application of photosynthetic microalgae have been expanding, leading to comprehensive and in-depth engineering of microalgae. The synthetic biology and genome editing technologies have enabled the applications of microalgae in medicine, agriculture, food, energy, and the environment. However, the survival and spreading of engineered microalgae in the natural environment pose potential safety risks to ecosystems and human health. To curb the risks caused by the spreading of engineered microalgae in the environment, biosafety policies should be formulated for engineered microalgae and the prevention and control technologies should be developed. Toward this goal, researchers have developed biocontainment systems, including positive strategies such as the design of toxic protein-based kill switches and passive strategies such as knocking out essential genes to construct the strains with nutritional deficiencies, thereby spatially containing engineered microalgae. This article summarizes the application of cutting-edge biotechnologies in the engineering of microalgae, the biosafety risks and management regulations associated with the escape of engineered microalgae, and the progress in novel biocontainment technologies established for engineered microalgae. Finally, this article gives insights into the future development direction of microalgae biocontainment.

    参考文献
    [1] SAAD MG, DOSOKY NS, ZOROMBA MS, SHAFIK HM. Algal biofuels: current status and key challenges[J]. Energies, 2019, 12(10): 1920.
    [2] FASAEI F, BITTER JH, SLEGERS PM, van BOXTEL AJB. Techno-economic evaluation of microalgae harvesting and dewatering systems[J]. Algal Research, 2018, 31: 347-362.
    [3] AZIZ MMA, KASSIM KA, SHOKRAVI Z, JAKARNI FM, LIU HY, ZAINI N, TAN LS, ISLAM ABMS, SHOKRAVI H. Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109621.
    [4] XU J, YUAN ZH, CHANG SY. Long-term cost trajectories for biofuels in China projected to 2050[J]. Energy, 2018, 160: 452-465.
    [5] MU DY, XIN CH, ZHOU WG. Life cycle assessment and techno-economic analysis of algal biofuel production[M]//Microalgae Cultivation for Biofuels Production. Amsterdam: Elsevier, 2020: 281-292.
    [6] ABDULLAH B, SYED MUHAMMAD SAF, SHOKRAVI Z, ISMAIL S, KASSIM KA, MAHMOOD AN, AZIZ MMA. Fourth generation biofuel: a review on risks and mitigation strategies[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 37-50.
    [7] ZHU BJ, CHEN G, CAO XP, WEI D. Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications[J]. Bioresource Technology, 2017, 244(Pt 2): 1207-1215.
    [8] ZERAATKAR AK, AHMADZADEH H, TALEBI AF, MOHEIMANI NR, McHENRY MP. Potential use of algae for heavy metal bioremediation, a critical review[J]. Journal of Environmental Management, 2016, 181: 817-831.
    [9] PARMAR A, SINGH NK, PANDEY A, GNANSOUNOU E, MADAMWAR D. Cyanobacteria and microalgae: a positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22): 10163-10172.
    [10] ANGERMAYR SA, GORCHS ROVIRA A, HELLINGWERF KJ. Metabolic engineering of cyanobacteria for the synthesis of commodity products[J]. Trends in Biotechnology, 2015, 33(6): 352-361.
    [11] LARKUM AWD, ROSS IL, KRUSE O, HANKAMER B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production[J]. Trends in Biotechnology, 2012, 30(4): 198-205.
    [12] AHMAD A, ASHRAF SS. Sustainable food and feed sources from microalgae: food security and the circular bioeconomy[J]. Algal Research, 2023, 74: 103185.
    [13] KHANRA S, MONDAL M, HALDER G, TIWARI ON, GAYEN K, BHOWMICK TK. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review[J]. Food and Bioproducts Processing, 2018, 110: 60-84.
    [14] SADVAKASOVA AK, KOSSALBAYEV BD, BAUENOVA MO, BALOUCH H, LEONG YK, ZAYADAN BK, HUANG ZY, ALHARBY HF, TOMO T, CHANG JS, ALLAKHVERDIEV SI. Microalgae as a key tool in achieving carbon neutrality for bioproduct production[J]. Algal Research, 2023, 72: 103096.
    [15] SABATHINI HA, WINDIANI L, DIANURSANTI, GOZAN M. Mechanical physicial properties of Chlorella-PVA based bioplastic with ultrasonic homogenizer[J]. E3S Web of Conferences, 2018, 67: 03046.
    [16] JANSSEN PJD, LAMBREVA MD, PLUMERÉ N, BARTOLUCCI C, ANTONACCI A, BUONASERA K, FRESE RN, SCOGNAMIGLIO V, REA G. Photosynthesis at the forefront of a sustainable life[J]. Frontiers in Chemistry, 2014, 2: 36.
    [17] CARONE M, ALPE D, COSTANTINO V, DEROSSI C, OCCHIPINTI A, ZANETTI M, RIGGIO VA. Design and characterization of a new pressurized flat panel photobioreactor for microalgae cultivation and CO2 bio-fixation[J]. Chemosphere, 2022, 307(Pt 2): 135755.
    [18] AL-HUSSIENY AA, ALJANABI HM, IMRAN NJ, HUSSAIN SF. Efficiency testing of algal Chlorella Sorokina and Coelastrella sp. to reduce carbon dioxide[J]. International Journal of Health Sciences, 2022, 6(S6): 6900-6914.
    [19] MOLAZADEH M, AHMADZADEH H, POURIANFAR HR, LYON S, RAMPELOTTO PH. The use of microalgae for coupling wastewater treatment with CO2 biofixation[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 42
    [20] REN HY, NI J, SHEN MW, ZHOU D, SUN FB, LOKE SHOW P. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles[J]. Bioresource Technology, 2023, 382: 129176.
    [21] ZHAO BT, SU YX. Macro assessment of microalgae-based CO2 sequestration: environmental and energy effects[J]. Algal Research, 2020, 51: 102066.
    [22] IGLINA T, IGLIN P, PASHCHENKO D. Industrial CO2 capture by algae: a review and recent advances[J]. Sustainability, 2022, 14(7): 3801.
    [23] BHAKTA JN, LAHIRI S, PITTMAN JK, JANA BB. Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae[J]. Journal of CO2 Utilization, 2015, 10: 105-112.
    [24] SHOKRAVI H, SHOKRAVI Z, HEIDARREZAEI M, ONG HC, RAHIMIAN KOLOOR SS, PETRŮ M, LAU WJ, ISMAIL AF. Fourth generation biofuel from genetically modified algal biomass: challenges and future directions[J]. Chemosphere, 2021, 285: 131535.
    [25] RAME R, PURWANTO P, SUDARNO S. Sustainable energy harnessing: microalgae as a potential biofuel source and carbon sequestration solution[J]. Renewable Energy Focus, 2023, 47: 100498.
    [26] de LIMA BARIZÁO AC, de OLIVEIRA GOMES LE, BRANDÁO LL, SAMPAIO ICF, de MOURA IVL, GONÖALVES RF, de OLIVEIRA JP, CASSINI ST. Microalgae as tertiary wastewater treatment: energy production, carbon neutrality, and high-value products[J]. Algal Research, 2023, 72: 103113.
    [27] de MORAIS EG, SAMPAIO ICF, GONZALEZ-FLO E, FERRER I, UGGETTI E, GARCÍA J. Microalgae harvesting for wastewater treatment and resources recovery: a review[J]. New Biotechnology, 2023, 78: 84-94.
    [28] LOUTSETI S, DANIELIDIS DB, ECONOMOU- AMILLI A, KATSAROS C, SANTAS R, SANTAS P. The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes[J]. Bioresource Technology, 2009, 100(7): 2099-2105.
    [29] BAI XL, ACHARYA K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp.[J]. Journal of Hazardous Materials, 2016, 315: 70-75.
    [30] Department of Energy Announces 36 Projects for Bioenergy Research and Development[EB/OL]. [2023-10-30]. https://www.energy.gov/articles/department- energy-announces-36-projects-bioenergy-research-and-development.
    [31] DOE Announces Nearly $34 Million to Advance Waste and Algae Bioenergy Technology[EB/OL]. [2023-10-30]. https://www.energy.gov/articles/doe-announces-nearly-34-million-advance-waste-and-algae-bioenergy-technology.
    [32] DOE Awards $45.5 Million for Projects to Advance Biotechnology Research[EB/OL]. [2023-10-30]. https://www.energy.gov/articles/doe-awards-455-million- projects-advance-biotechnology-research.
    [33] SHIN YS, JEONG J, NGUYEN THT, KIM JYH, JIN E, SIM SJ. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production[J]. Bioresource Technology, 2019, 271: 368-374.
    [34] KAO PH, NG IS. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii[J]. Bioresource Technology, 2017, 245(Pt B): 1527-1537.
    [35] KARUPPAIYAN J, DHAR DW, SUCHITRA R. Recent developments in microalgal genome editing for enhancing lipid accumulation and biofuel recovery[J]. Biomass and Bioenergy, 2021, 150: 106093.
    [36] MA YH, WANG X, NIU YF, YANG ZK, ZHANG MH, WANG ZM, YANG WD, LIU JS, LI HY. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum[J]. Microbial Cell Factories, 2014, 13(1): 100.
    [37] HENLEY WJ, LITAKER RW, NOVOVESKÁ L, DUKE CS, QUEMADA HD, SAYRE RT. Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation[J]. Algal Research, 2013, 2(1): 66-77.
    [38] LEE JW, CHAN CTY, SLOMOVIC S, COLLINS JJ. Next-generation biocontainment systems for engineered organisms[J]. Nature Chemical Biology, 2018, 14: 530-537.
    [39] WANG FZ, ZHANG WW. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions[J]. Journal of Biosafety and Biosecurity, 2019, 1(1): 22-30.
    [40] PRAKASH D, VERMA S, BHATIA R, TIWARY BN. Risks and precautions of genetically modified organisms[J]. ISRN Ecology, 2011, 2011: 369573.
    [41] LEI AP, CHEN H, SHEN GM, HU ZL, CHEN L, WANG JX. Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors[J]. Biotechnology for Biofuels, 2012, 5(1): 18.
    [42] GOMMA AE, LEE SK, SUN SM, YANG SH, CHUNG G. Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda[J]. Indian Journal of Microbiology, 2015, 55(4): 447-455.
    [43] CHEN JW, LIU WJ, HU DX, WANG X, BALAMURUGAN S, ALIMUJIANG A, YANG WD, LIU JS, LI HY. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica[J]. Biotechnology and Applied Biochemistry, 2017, 64(5): 620-626.
    [44] LI ZP, MENG T, LING XP, LI J, ZHENG CQ, SHI YY, CHEN Z, LI ZQ, LI QB, LU YH, HE N. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production[J]. Journal of Agricultural and Food Chemistry, 2018, 66(21): 5382-5391.
    [45] BERG P, BALTIMORE D, BRENNER S, ROBLIN RO, SINGER MF. Summary statement of the Asilomar conference on recombinant DNA molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(6): 1981-1984.
    [46] STEIDLER L, NEIRYNCK S, HUYGHEBAERT N, SNOECK V, VERMEIRE A, GODDEERIS B, COX E, REMON JP, REMAUT E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10[J]. Nature Biotechnology, 2003, 21: 785-789.
    [47] RONCHEL MC, RAMOS JL. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation[J]. Applied and Environmental Microbiology, 2001, 67(6): 2649-2656.
    [48] HIROTA R, ABE K, KATSUURA ZI, NOGUCHI R, MORIBE S, MOTOMURA K, ISHIDA T, ALEXANDROV M, FUNABASHI H, IKEDA T, KURODA A. A novel biocontainment strategy makes bacterial growth and survival dependent on phosphite[J]. Scientific Reports, 2017, 7: 44748.
    [49] HEDIN KA, KRUSE V, VAZQUEZ-URIBE R, SOMMER MOA. Biocontainment strategies for in vivo applications of Saccharomyces boulardii[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1136095.
    [50] HAYES F, KĘDZIERSKA B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs[J]. Toxins, 2014, 6(1): 337-358.
    [51] CHAN CTY, LEE JW, CAMERON DE, BASHOR CJ, COLLINS JJ. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment[J]. Nature Chemical Biology, 2016, 12: 82-86.
    [52] ROTTINGHAUS AG, FERREIRO A, FISHBEIN SRS, DANTAS G, MOON TS. Genetically stable CRISPR-based kill switches for engineered microbes[J]. Nature Communications, 2022, 13: 672.
    [53] ZHOU YQ, SUN T, CHEN ZX, SONG XY, CHEN L, ZHANG WW. Development of a new biocontainment strategy in model Cyanobacterium Synechococcus strains[J]. ACS Synthetic Biology, 2019, 8(11): 2576-2584.
    [54] DYSON F. Our biotech future[J]. The New York Review of Books, 2007, 54(12): 1-7.
    [55] DEPLAZES A. Piecing together a puzzle: an exposition of synthetic biology[J]. EMBO Reports, 2009, 10(5): 428-432
    [56] NIELSEN J, KEASLING JD. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197.
    [57] MUSSGNUG JH. Genetic tools and techniques for Chlamydomonas reinhardtii[J]. Applied Microbiology and Biotechnology, 2015, 99(13): 5407-5418.
    [58] RAMARAJAN M, FABRIS M, ABBRIANO RM, PERNICE M, RALPH PJ. Novel endogenous promoters for genetic engineering of the marine microalga Nannochloropsis gaditana CCMP526[J]. Algal Research, 2019, 44: 101708.
    [59] ZHOU J, ZHANG HF, MENG HK, ZHU Y, BAO GH, ZHANG YP, LI Y, MA YH. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria[J]. Scientific Reports, 2014, 4: 4500.
    [60] SCRANTON MA, OSTRAND JT, GEORGIANNA DR, LOFGREN SM, LI D, ELLIS RC, CARRUTHERS DN, DRÁGER A, MASICA DL, MAYFIELD SP. Synthetic promoters capable of driving robust nuclear gene expression in the green Alga Chlamydomonas reinhardtii[J]. Algal Research, 2016, 15: 135-142.
    [61] NAKAHIRA Y, OGAWA A, ASANO H, OYAMA T, TOZAWA Y. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942[J]. Plant and Cell Physiology, 2013, 54(10): 1724-1735.
    [62] OHBAYASHI R, AKAI H, YOSHIKAWA H, HESS WR, WATANABE S. A tightly inducible riboswitch system in Synechocystis sp. PCC 6803[J]. The Journal of General and Applied Microbiology, 2016, 62(3): 154-159.
    [63] VAVITSAS K, CROZET P, VINDE MH, DAVIES F, LEMAIRE SD, VICKERS CE. The synthetic biology toolkit for photosynthetic microorganisms[J]. Plant Physiology, 2019, 181(1): 14-27.
    [64] SUN T, LI SB, SONG XY, DIAO JJ, CHEN L, ZHANG WW. Toolboxes for cyanobacteria: recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307.
    [65] FABRIS M, ABBRIANO RM, PERNICE M, SUTHERLAND DL, COMMAULT AS, HALL CC, LABEEUW L, McCAULEY JI, KUZHIUPARAMBIL U, RAY P, KAHLKE T, RALPH PJ. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy[J]. Frontiers in Plant Science, 2020, 11: 279.
    [66] TAN KWM, LEE YK. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii[J]. Journal of Biotechnology, 2017, 247: 60-67.
    [67] TAKEMURA T, IMAMURA S, TANAKA K. Identification of a chloroplast fatty acid exporter protein, CmFAX1, and triacylglycerol accumulation by its overexpression in the unicellular red alga Cyanidioschyzon merolae[J]. Algal Research, 2019, 38: 101396.
    [68] XUE J, BALAMURUGAN S, LI DW, LIU YH, ZENG H, WANG L, YANG WD, LIU JS, LI HY. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply[J]. Metabolic Engineering, 2017, 41: 212-221.
    [69] HUANG CH, SHEN CR, LI H, SUNG LY, WU MY, HU YC. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942[J]. Microbial Cell Factories, 2016, 15(1): 196.
    [70] AJJAWI I, VERRUTO J, AQUI M, SORIAGA LB, COPPERSMITH J, KWOK K, PEACH L, ORCHARD E, KALB R, XU WD, CARLSON TJ, FRANCIS K, KONIGSFELD K, BARTALIS J, SCHULTZ A, LAMBERT W, SCHWARTZ AS, BROWN R, MOELLERING ER. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator[J]. Nature Biotechnology, 2017, 35: 647-652.
    [71] YUNUS IS, JONES PR. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols[J]. Metabolic Engineering, 2018, 49: 59-68.
    [72] LIN WR, LAI Y, SUNG PK, TAN SI, CHANG CH, CHEN C, CHANG J, NG I. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 131-141.
    [73] RASALA BA, MUTO M, SULLIVAN J, MAYFIELD SP. Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization[J]. Plant Biotechnology Journal, 2011, 9(6): 674-683.
    [74] HEMPEL F, MAIER UG. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency[J]. Microbial Cell Factories, 2012, 11: 126.
    [75] DEMURTAS OC, MASSA S, FERRANTE P, VENUTI A, FRANCONI R, GIULIANO G. A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection[J]. PloS One, 2013, 8(4): e61473.
    [76] PEREZ-PINERA P, OUSTEROUT DG, GERSBACH CA. Advances in targeted genome editing[J]. Current Opinion in Chemical Biology, 2012, 16(3/4): 268-277
    [77] CARROLL D. Genome engineering with targetable nucleases[J]. Annual Review of Biochemistry, 2014, 83: 409-439
    [78] NG IS, KESKIN BB, TAN SI. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria[J]. Biotechnology Journal, 2020, 15(8): e1900228
    [79] ZHU HC, LI C, GAO CX. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nature Reviews Molecular Cell Biology, 2020, 21: 661-677.
    [80] PICKAR-OLIVER A, GERSBACH CA. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20: 490-507.
    [81] JEON S, LIM JM, LEE HG, SHIN SE, KANG NK, PARK YI, OH HM, JEONG WJ, JEONG BR, CHANG YK. Current status and perspectives of genome editing technology for microalgae[J]. Biotechnology for Biofuels, 2017, 10: 267.
    [82] JIANG WZ, BRUEGGEMAN AJ, HORKEN KM, PLUCINAK TM, WEEKS DP. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii[J]. Eukaryotic Cell, 2014, 13(11): 1465-1469.
    [83] UNGERER J, PAKRASI HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria[J]. Scientific Reports, 2016, 6: 39681.
    [84] WENDT KE, UNGERER J, COBB RE, ZHAO HM, PAKRASI HB. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Microbial Cell Factories, 2016, 15(1): 115.
    [85] PICARIELLO T, HOU YQ, KUBO T, McNEILL NA, YANAGISAWA HA, ODA T, WITMAN GB. TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii[J]. PLoS One, 2020, 15(5): e0232594
    [86] YOSHIMITSU Y, ABE J, HARAYAMA S. Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ[J]. Biotechnology for Biofuels, 2018, 11: 326.
    [87] SERIF M, DUBOIS G, FINOUX AL, TESTE MA, JALLET D, DABOUSSI F. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing[J]. Nature Communications, 2018, 9: 3924.
    [88] TAPARIA Y, DOLUI AK, BOUSSIBA S, KHOZIN-GOLDBERG I. Multiplexed genome editing via an RNA polymerase II promoter-driven sgRNA array in the diatom Phaeodactylum tricornutum: insights into the role of StLDP[J]. Frontiers in Plant Science, 2022, 12: 784780.
    [89] GUTBROD MJ, MARTIENSSEN RA. Conserved chromosomal functions of RNA interference[J]. Nature Reviews Genetics, 2020, 21: 311-331.
    [90] KIM EJ, CERUTTI H. Targeted gene silencing by RNA interference in Chlamydomonas[M]//Methods in Cell Biology. Amsterdam: Elsevier, 2009: 99-110.
    [91] IBRAHIM F, RYMARQUIS LA, KIM EJ, BECKER J, BALASSA E, GREEN PJ, CERUTTI H. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3906-3911
    [92] CERUTTI H, MA XR, MSANNE J, REPAS T. RNA-mediated silencing in algae: biological roles and tools for analysis of gene function[J]. Eukaryotic Cell, 2011, 10(9): 1164-1172.
    [93] OEY M, ROSS IL, STEPHENS E, STEINBECK J, WOLF J, RADZUN KA, KÜGLER J, RINGSMUTH AK, KRUSE O, HANKAMER B. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii[J]. PLoS One, 2013, 8(4): e61375.
    [94] REIJNDERS MJMF, van HECK RGA, LAM CMC, SCAIFE MA, dos SANTOS VAPM, SMITH AG, SCHAAP PJ. Green genes: bioinformatics and systems-biology innovations drive algal biotechnology[J]. Trends in Biotechnology, 2014, 32(12): 617-626.
    [95] LOPEZ D, CASERO D, COKUS SJ, MERCHANT SS, PELLEGRINI M. Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data[J]. BMC Bioinformatics, 2011, 12: 282.
    [96] TARDIF M, ATTEIA A, SPECHT M, COGNE G, ROLLAND N, BRUGIÉRE S, HIPPLER M, FERRO M, BRULEY C, PELTIER G, VALLON O, COURNAC L. PredAlgo: a new subcellular localization prediction tool dedicated to green algae[J]. Molecular Biology and Evolution, 2012, 29(12): 3625-3639.
    [97] WIENKOOP S, WEISS J, MAY P, KEMPA S, IRGANG S, RECUENCO-MUNOZ L, PIETZKE M, SCHWEMMER T, RUPPRECHT J, EGELHOFER V, WECKWERTH W. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses[J]. Molecular BioSystems, 2010, 6(6): 1018-1031.
    [98] RODGERS-MELNICK E, CULP M, DiFAZIO SP. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS[J]. BMC Genomics, 2013, 14: 608.
    [99] CHANG RL, GHAMSARI L, MANICHAIKUL A, HOM EFY, BALAJI S, FU WQ, SHEN Y, HAO T, PALSSON BØ SALEHI-ASHTIANI K, PAPIN JA. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism[J]. Molecular Systems Biology, 2011, 7: 518.
    [100] Dal’MOLIN CG, QUEK LE, PALFREYMAN RW, NIELSEN LK. AlgaGEM-a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome[J]. BMC Genomics, 2011, 12(suppl 4): S5.
    [101] KOTHARI R, SINGH HM, AZAM R, GORIA K, BHARTI A, SINGH A, BAJAR S, PATHAK A, PANDEY AK, TYAGI VV. Potential avenue of genetic engineered algal derived bioactive compounds: influencing parameters, challenges and future prospects[J]. Phytochemistry Reviews, 2023, 22(4): 935-968.
    [102] FINLAY BJ. Global dispersal of free-living microbial eukaryote species[J]. Science, 2002, 296(5570): 1061-1063.
    [103] MACK RN, SIMBERLOFF D, LONSDALE WM, EVANS H, CLOUT M, BAZZAZ FA. Biotic invasions: causes, epidemiology, global consequences, and control[J]. Ecological Applications, 2000, 10(3): 689.
    [104] ČELEŠNIK H, TANŠEK A, TAHIROVIĆ A, VIŽINTIN A, MUSTAR J, VIDMAR V, DOLINAR M. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803[J]. Biology Open, 2016, 5(4): 519-528.
    [105] KUMAR S. GM algae for biofuel production: biosafety and risk assessment[J]. Collect Biosaf Rev, 2015, 9: 52-75.
    [106] WILKIE AC, EDMUNDSON SJ, DUNCAN JG. Indigenous algae for local bioresource production: phycoprospecting[J]. Energy for Sustainable Development, 2011, 15(4): 365-371.
    [107] FLYNN KJ, GREENWELL HC, LOVITT RW, SHIELDS RJ. Selection for fitness at the individual or population levels: modelling effects of genetic modifications in microalgae on productivity and environmental safety[J]. Journal of Theoretical Biology, 2010, 263(3): 269-280.
    [108] SNOW AA, SMITH VH. Genetically engineered algae for biofuels: a key role for ecologists[J]. BioScience, 2012, 62(8): 765-768.
    [109] NEVES RAF, RODRIGUES ET. Harmful Algal Blooms: Effect on Coastal Marine Ecosystems[M]// Encyclopedia of the UN Sustainable Development Goals. Cham: Springer International Publishing, 2022: 435-466.
    [110] SHARON-GOJMAN R, LEU S, ZARKA A. Antenna size reduction and altered division cycles in self-cloned, marker-free genetically modified strains of Haematococcus pluvialis[J]. Algal Research, 2017, 28: 172-183.
    [111] SHOKRAVI H, SHOKRAVI Z, AZIZ MA, SHOKRAVI H. Algal Biofuel: a Promising Alternative for Fossil Fuel[M]//Fossil Free Fuels. Boca Raton: CRC Press, 2019: 187-211.
    [112] 徐潇, 阚飙. 活的非可培养状态霍乱弧菌研究进展[J]. 疾病监测, 2010, 25(3): 222-225. XU X, KAN B. The viable but nonculturable state of Vibrio cholerae[J]. Disease Surveillance, 2010, 25(3): 222-225(in Chinese).
    [113] RUMPHO ME, WORFUL JM, LEE J, KANNAN K, TYLER MS, BHATTACHARYA D, MOUSTAFA A, MANHART JR. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17867-17871.
    [114] QUIST D, CHAPELA IH. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico[J]. Nature, 2001, 414: 541-543.
    [115] NATIONAL ACADEMIES OF SCIENCES ENGINEERING, MEDICINE. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values[M]. Washington, DC: National Academies Press. 2016.
    [116] National Algal Biofuels Technology Roadmap[EB/OL]. https://www.energy.gov/eere/bioenergy/articles/national-algal-biofuels-technology-roadmap.
    [117] GMO legislation[EB/OL]. https://food.ec.europa.eu/ plants/genetically-modified-organisms/gmo-legislation_en.
    [118] CHAUVET M, GALVEZ A. Learning about biosafety in Mexico: between competitiveness and conservation[J]. International Journal of Biotechnology, 2005, 7(1/2/3): 62-71.
    [119] LAW ON BIOSAFETY OF GENETICALLY MODIFIED ORGANISMS[Z]. Mexico, 2005-2.
    [120] KAFI MJ. Regulation of genetically modified organisms in India and the influence of Cartagena protocol on its biosafety framework[D]. Dhaka: Brac University, 2022.
    [121] KUMAR S, K BHATNAGAR R, R KRANTHI K, DATTA SK. The legal battle over field trials of GM crops[J]. Nature India, 2014.
    [122] 唐仁健. 中华人民共和国农业农村部令2022年第2号农业农村部关于修改《农业转基因生物安全评价管理办法》等规章的决定[S]. 2022: 22-25. TANG RJ. Order of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 2 of 2022, Decision of the Ministry of Agriculture and Rural Affairs on Amending the Regulations on the Safety Evaluation and Management of Agricultural Genetically Modified Organisms[S]. Announcement of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2022: 22-25(in Chinese).
    [123] BARRY A, WOLFE A, ENGLISH C, RUDDICK C, LAMBERT D. 2016 National Algal Biofuels Technology Review[R]. United States: U.S. Department of Energy. 2016.
    [124] SZYJKA SJ, MANDAL S, SCHOEPP NG, TYLER BM, YOHN CB, POON YS, VILLAREAL S, BURKART MD, SHURIN JB, MAYFIELD SP. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production[J]. Algal Research, 2017, 24: 378-386.
    [125] LIANG Y, KASHDAN T, STERNER C, DOMBROWSKI L, PETRICK I, KRÖGER M, HÖFER R. Algal Biorefineries[M]//Industrial Biorefineries & White Biotechnology. New York: Elsevier, 2015: 35-90.
    [126] GONZÁLEZ-MORALES SI, PACHECO-GUTIÉRREZ NB, RAMÍREZ-RODRÍGUEZ CA, BRITO-BELLO AA, ESTRELLA-HERNÁNDEZ P, HERRERA- ESTRELLA L, LÓPEZ-ARREDONDO DL. Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds[J]. Biotechnology for Biofuels, 2020, 13: 119.
    [127] MEHTA AP, LI H, REED SA, SUPEKOVA L, JAVAHISHVILI T, SCHULTZ PG. Replacement of thymidine by a modified base in the Escherichia coli genome[J]. Journal of the American Chemical Society, 2016, 138(23): 7272-7275.
    [128] LUO M, GROAZ E, FROEYEN M, PEZO V, JAZIRI F, LEONCZAK P, SCHEPERS G, ROZENSKI J, MARLIÉRE P, HERDEWIJN P. Invading Escherichia coli genetics with a xenobiotic nucleic acid carrying an acyclic phosphonate backbone (ZNA)[J]. Journal of the American Chemical Society, 2019, 141(27): 10844-10851.
    [129] 乔玉龙. 重组核酸酶的制备及应用[D]. 长春: 长春理工大学硕士学位论文, 2013. QIAO YL. Preparation and application of recombinant nuclease[D]. Changchun: Master’s Thesis of Changchun University of Science and Technology, 2013(in Chinese).
    [130] BALAN A, SCHENBERG ACG. A conditional suicide system for Saccharomyces cerevisiae relying on the intracellular production of the Serratia marcescens nuclease[J]. Yeast, 2005, 22(3): 203-212.
    [131] HAMILTON TA, PELLEGRINO GM, THERRIEN JA, HAM DT, BARTLETT PC, KARAS BJ, GLOOR GB, EDGELL DR. Efficient inter-species conjugative transfer of CRISPR nuclease for targeted bacterial killing[J]. Nature Communications, 2019, 10: 4544.
    [132] HECKER M, SCHROETER A, TRÁDER K, MACH F. Role of relA mutation in the survival of amino acid-starved Escherichia coli[J]. Archives of Microbiology, 1986, 143(4): 400-402.
    [133] CLARK RL, GORDON GC, BENNETT NR, LYU HX, ROOT TW, PFLEGER BF. High-CO2 requirement as mechanism for the containment of genetically modified cyanobacteria[J]. ACS Synthetic Biology, 2018, 7(2): 384-391.
    [134] MOTOMURA K, SANO K, WATANABE S, KANBARA A, GAMAL NASSER AH, IKEDA T, ISHIDA T, FUNABASHI H, KURODA A, HIROTA R. Synthetic phosphorus metabolic pathway for biosafety and contamination management of cyanobacterial cultivation[J]. ACS Synthetic Biology, 2018, 7(9): 2189-2198.
    [135] CHANGKO S, RAJAKUMAR PD, YOUNG REB, PURTON S. The phosphite oxidoreductase gene, ptxD as bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 675-686.
    [136] DAHLIN LUKAS R, GUARNIERI MICHAEL T. Heterologous expression of phosphite dehydrogenase in the chloroplast or nucleus enables phosphite utilization and genetic selection in Picochlorum spp.[J]. Algal Research, 2022, 62: 102604.
    [137] WEISSMAN JC, LIKHOGRUD M, THOMAS DC, FANG W, KARNS DAJ, CHUNG JW, NIELSEN R, POSEWITZ MC. High-light selection produces fast-growing Picochlorum celeri[J]. Algal Research, 2018, 36: 17-28.
    [138] DAHLIN LR, GERRITSEN AT, HENARD CA, van WYCHEN S, LINGER JG, KUNDE Y, HOVDE BT, STARKENBURG SR, POSEWITZ MC, GUARNIERI MT. Development of high-productivity, halophilic, thermotolerant microalga Picochlorum renovo[J]. Communications Biology, 2019, 2: 388.
    [139] SLATTERY SS, WANG H, GIGUERE DJ, KOCSIS C, URQUHART BL, KARAS BJ, EDGELL DR. Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing[J]. Scientific Reports, 2020, 10: 13879.
    [140] WANG QT, LU YD, XIN Y, WEI L, HUANG S, XU J. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9[J]. The Plant Journal: for Cell and Molecular Biology, 2016, 88(6): 1071-1081.
    [141] DINER RE, SCHWENCK SM, McCROW JP, ZHENG H, ALLEN AE. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms[J]. Frontiers in Microbiology, 2016, 7: 880.
    [142] McCARTHY JK, SMITH SR, McCROW JP, TAN M, ZHENG H, BEERI K, ROTH R, LICHTLE C, GOODENOUGH U, BOWLER CP, DUPONT CL, ALLEN AE. Nitrate reductase knockout uncouples nitrate transport from nitrate assimilation and drives repartitioning of carbon flux in model pennate diatom[J]. The Plant Cell, 2017, 29(8): 2047-2070.
    [143] KNUDSEN SM, KARLSTRÖM OH. Development of efficient suicide mechanisms for biological containment of bacteria[J]. Applied and Environmental Microbiology, 1991, 57(1): 85-92.
    [144] GERDES K, BECH FW, JØRGENSEN ST, LØBNER-OLESEN A, RASMUSSEN PB, ATLUNG T, BOE L, KARLSTROM O, MOLIN S, von MEYENBURG K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon[J]. The EMBO Journal, 1986, 5(8): 2023-2029.
    [145] JURÉNAS D, FRAIKIN N, GOORMAGHTIGH F, van MELDEREN L. Biology and evolution of bacterial toxin-antitoxin systems[J]. Nature Reviews Microbiology, 2022, 20: 335-350.
    [146] HOFFMANN SA, CAI YZ. Engineering stringent genetic biocontainment of yeast with protein stability switch[J]. Nature Communications, 2024, 15: 1060.
    [147] ISHIKAWA M, KOJIMA T, HORI K. Development of biocontained toluene-degrading bacterium for environmental protection[J]. Microbiology Spectrum, 2021, 9(1): e0025921.
    [148] ROVNER AJ, HAIMOVICH AD, KATZ SR, LI Z, GROME MW, GASSAWAY BM, AMIRAM M, PATEL JR, GALLAGHER RR, RINEHART J, ISAACS FJ. Recoded organisms engineered to depend on synthetic amino acids[J]. Nature, 2015, 518: 89-93.
    [149] MANDELL DJ, LAJOIE MJ, MEE MT, TAKEUCHI R, KUZNETSOV G, NORVILLE JE, GREGG CJ, STODDARD BL, CHURCH GM. Biocontainment of genetically modified organisms by synthetic protein design[J]. Nature, 2015, 518: 55-60.
    [150] SANTOS MA, CHEESMAN C, COSTA V, MORADAS-FERREIRA P, TUITE MF. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp.[J]. Molecular Microbiology, 1999, 31(3): 937-947
    [151] YOUNG REB, PURTON S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii[J]. Plant Biotechnology Journal, 2016, 14(5): 1251-1260.
    [152] CHATTERJEE A, LAJOIE MJ, XIAO H, CHURCH GM, SCHULTZ PG. A bacterial strain with unique quadruplet codon specifying non-native amino acids[J]. Chembiochem: European Journal of Chemical Biology, 2014, 15(12): 1782-1786.
    [153] FREDENS J, WANG KH, deLa TORRE D, FUNKE LFH, ROBERTSON WE, CHRISTOVA Y, CHIA T, SCHMIED WH, DUNKELMANN DL, BERÁNEK V, UTTAMAPINANT C, LLAMAZARES AG, ELLIOTT TS, CHIN JW. Total synthesis of Escherichia coli with recoded genome[J]. Nature, 2019, 569: 514-518.
    [154] VENETZ JE, del MEDICO L, WÖLFLE A, SCHÄCHLE P, BUCHER Y, APPERT D, TSCHAN F, FLORES-TINOCO CE, van KOOTEN M, GUENNOUN R, DEUTSCH S, CHRISTEN M, CHRISTEN B. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 8070-8079.
    [155] ZHU XY, ZHANG ZY, JIA B, YUAN YJ. Current advances of biocontainment strategy in synthetic biology[J]. Chinese Journal of Chemical Engineering, 2023, 56: 141-151.[156] BLAZEJEWSKI T, HO HI, WANG HH. Synthetic sequence entanglement augments stability and containment of genetic information in cells[J]. Science, 2019, 365(6453): 595-598.
    [157] CHEN Z, KIBLER RD, HUNT A, BUSCH F, PEARL J, JIA M, VANAERNUM ZL, WICKY BI, DODS G, LIAO H. De novo design of protein logic gates[J]. Science, 2020, 368: 78-84.
    [158] CHAVEZ A, PRUITT BW, TUTTLE M, SHAPIRO RS, CECCHI RJ, WINSTON J, TURCZYK BM, TUNG M, COLLINS JJ, CHURCH GM. Precise Cas9 targeting enables genomic mutation prevention[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(14): 3669-3673.
    [159] CAI YZ, AGMON N, CHOI WJ, UBIDE A, STRACQUADANIO G, CARAVELLI K, HAO HP, BADER JS, BOEKE JD. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6): 1803-1808.
    [160] TANG TC, THAM E, LIU XY, YEHL K, ROVNER AJ, YUK H, deLa FUENTE-NUNEZ C, ISAACS FJ, ZHAO XH, LU TK. Hydrogel-based biocontainment of bacteria for continuous sensing and computation[J]. Nature Chemical Biology, 2021, 17: 724-731.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晋,宋馨宇,陈磊,张卫文. 工程微藻的生物安全风险、管控及生物封存[J]. 生物工程学报, 2024, 40(9): 2948-2967

复制
分享
文章指标
  • 点击次数:248
  • 下载次数: 715
  • HTML阅读次数: 633
  • 引用次数: 0
历史
  • 收稿日期:2023-11-28
  • 最后修改日期:2024-02-29
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6332891位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司