Abstract:Cardiovascular diseases are major diseases, and there is lack of artificial blood vessels with small diameters which can be applied in coronary artery bypass surgery. The conventional vascular scaffold preparation techniques in tissue engineering have shortcomings in regulating the diameter, geometric shape, and interconnectivity of the scaffold. 3D bioprinting can simulate the natural structure of the vascular tissue, accurately print live cells and biomaterials, and regulate the microstructure and porosity of scaffolds on the nanoscale, providing new ideas for vascular tissue engineering. This article systematically evaluates the classification of 3D bioprinting technologies and reviews the latest research progress of 3D bioprinting in vascular tissue engineering. It summarizes the advantages of 3D bioprinting and points out the problems that need to be solved, such as the immune rejection of blood vessel materials, providing reference for the further research.