新冠病毒主蛋白酶特异性荧光底物ddRFP-M的制备与鉴定
作者:
基金项目:

安徽省自然科学基金(1808085QH265);安徽省高等学校自然科学研究项目(KJ2021A0839);皖南医学院青年骨干人才资助项目(wyqnyx202104);安徽省研究生学术创新项目(2022xscx129)


Preparation and characterization of a fluorogenic ddRFP-M biosensor as a specific SARS-CoV-2 main protease substrate
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [12]
  • | | |
  • 文章评论
    摘要:

    传统的新冠病毒主蛋白酶(main protease, Mpro)多肽底物具有制备成本高、稳定性差和合成工艺复杂等缺点,积极开发廉价稳定的新型底物具有重要意义。本研究基于二聚化红色荧光蛋白(dimerization-dependent red fluorescent protein, ddRFP)原理,以AVLQS为连接肽,利用基因工程技术制备Mpro特异性荧光底物ddRFP-M,用于Mpro抑制剂的药理活性评价。将连接肽基因插入到密码子优化的RFP-A1RFP-B1基因之间,构建ddRFP-M基因,再将其克隆到pET-28a载体中构建重组质粒。将重组质粒转化至大肠杆菌Rosetta(DE3)感受态细胞中,以卡那霉素抗性法筛选重组子。重组子经低温诱导后,在大肠杆菌中进行荧光底物ddRFP-M的可溶表达,并以HisTrapTM层析柱进行分离纯化。以荧光动力学检测法和电泳法测定ddRFP-M的底物特异性,并利用荧光底物ddRFP-M评价恩赛特韦和黄芩素的药理活性。结果显示,荧光底物ddRFP-M在大肠杆菌中呈可溶表达并成功进行了分离纯化,其具有良好的底物特异性、灵敏性和可靠性。新冠病毒Mpro特异性荧光底物ddRFP-M的制备,为新冠病毒Mpro抑制剂的药理活性评价奠定了基础。

    Abstract:

    The conventional peptide substrates of SARS-CoV-2 main protease (Mpro) are frequently associated with high cost, unstable kinetics, and multistep synthesis. Hence, there is an urgent need to design affordable and stable Mpro substrates for pharmacological research. Herein, we designed a functional Mpro substrate based on a dimerization-dependent red fluorescent protein (ddRFP) for the evaluation of Mpro inhibitors in vitro. The codon-optimized DNA fragment encoding RFP-A1 domain, a polypeptide linker containing Mpro cleavage sequence (AVLQS), and the RFP-B1 domain was subcloned into the pET-28a vector. After transformation into Escherichia coli Rosetta(DE3) cells, the kanamycin resistant transformants were selected. Using a low temperature induction strategy, most of the target proteins (ddRFP-M) presented in the supernatant fractions were collected and purified by a HisTrapTM chelating column. Subsequently, the inhibition of Mpro by ensitrelvir and baicalein was assessed using ddRFP-M assay, and the biochemical properties of ddRFP-M substrate were analyzed. Our results showed that the fluorogenic substrate ddRFP-M was successfully prepared from E. coli cells, and this biosensor exhibited the expected specificity, sensitivity, and reliability. In conclusion, the production of the fluorogenic substrate ddRFP-M provides an expedient avenue for the assessment of Mpro inhibitors in vitro.

    参考文献
    [1] GAO SJ, GUO HT, LUO GX. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert![J]. Journal of Medical Virology, 2022, 94(4):1255-1256.
    [2] CAO YL, WANG J, JIAN FC, XIAO TH, SONG WL, YISIMAYI A, HUANG WJ, LI QQ, WANG P, AN R, WANG J, WANG Y, NIU X, YANG SJ, LIANG H, SUN HY, LI T, YU YL, CUI QQ, LIU S, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies[J]. Nature, 2022, 602(7898):657-663.
    [3] MEDINA-ENRÍQUEZ MM, LOPEZ-LEÓN S, CARLOS-ESCALANTE JA, APONTE-TORRES Z, CUAPIO A, WEGMAN-OSTROSKY T. ACE2:the molecular doorway to SARS-CoV-2[J]. Cell & Bioscience, 2020, 10(1):148.
    [4] SHANG J, WAN YS, LUO CM, YE G, GENG QB, AUERBACH A, LI F. Cell entry mechanisms of SARS-CoV-2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21):11727-11734.
    [5] ANIRUDHAN V, LEE H, CHENG H, COOPER L, RONG LJ. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19[J]. Journal of Medical Virology, 2021, 93(5):2722-2734.
    [6] CHEN ZN, CUI QH, COOPER L, ZHANG P, LEE H, CHEN ZY, WANG YY, LIU XY, RONG LJ, DU RK. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases[J]. Cell & Bioscience, 2021, 11(1):45.
    [7] MILLIGAN JC, ZEISNER TU, PAPAGEORGIOU G, JOSHI D, SOUDY C, ULFERTS R, WU M, LIM CT, TAN KW, WEISSMANN F, CANAL B, FUJISAWA R, DEEGAN T, NAGARAJ H, BINEVA-TODD G, BASIER C, CURRAN JF, HOWELL M, BEALE R, LABIB K, et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease[J]. Biochemical Journal, 2021, 478(13):2499-2515.
    [8] 闫干干, 李东升, 戚海燕, 付正豪, 刘晓平, 张晶, 陈云雨. 新冠病毒主蛋白酶小分子抑制剂荧光共振能量转移高通量筛选模型的优化与应用[J]. 生物工程学报, 2022, 38(6):2236-2249. YAN GG, LI DS, QI HY, FU ZH, LIU XP, ZHANG J, CHEN YY. Discovery of SARS-CoV-2 main protease inhibitors using an optimized FRET-based high-throughput screening assay[J]. Chinese Journal of Biotechnology, 2022, 38(6):2236-2249(in Chinese).
    [9] YAN GG, LI DS, LIN Y, FU ZH, QI HY, LIU XP, ZHANG J, SI S, CHEN YY. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors[J]. Cell & Bioscience, 2021, 11(1):199.
    [10] ZHANG J, YAN HH, YAN GG, LIU XP, WANG YC, CHEN YY. Protocol for high-throughput screening of SARS-CoV-2 main protease inhibitors using a robust fluorescence polarization assay[J]. STAR Protocols, 2022, 3(4):101794.
    [11] 闫浩浩, 闫干干, 戚海燕, 刘志成, 刘晓丽, 刘晓平, 李霓, 陈云雨. 新型三明治样荧光偏振筛选模型在新型冠状病毒主蛋白酶小分子抑制剂筛选中的应用[J]. 生物工程学报, 2022, 38(6):2352-2364. YAN HH, YAN GG, QI HY, LIU ZC, LIU XL, LIU XP, LI N, CHEN YY. Identifying SARS-CoV-2 main protease inhibitors by a novel sandwich-like fluorescence polarization screening assay[J]. Chinese Journal of Biotechnology, 2022, 38(6):2352-2364(in Chinese).
    [12] ZHANG R, YAN HH, ZHOU JH, LIU XP, CHEN YY. Invalidation of geraniin as a potential inhibitor against SARS-CoV-2 main protease[J]. Natural Product Research, 2023. DOI:10.1080/14786419.2023.2241973.
    [13] YAN HH, ZHANG R, LIU XP, WANG YC, CHEN YY. Reframing quercetin as a promiscuous inhibitor against SARS-CoV-2 main protease[J]. Proceedings of National Academy of Sciences of the United States of America, 2023, 120(37):e2309289120.
    [14] 陈云雨, 付正豪, 闫干干, 林媛, 刘晓平. 基于密码子优化策略的新型冠状病毒主蛋白酶在大肠杆菌中的表达条件优化与活性鉴定[J]. 生物工程学报, 2021, 37(4):1334-1345. CHEN YY, FU ZH, YAN GG, LIN Y, LIU XP. Optimization of expression conditions and determination the proteolytic activity of codon-optimized SARS-CoV-2 main protease in Escherichia coli[J]. Chinese Journal of Biotechnology, 2021, 37(4):1334-1345(in Chinese).
    [15] JIA BL, JEON CO. High-throughput recombinant protein expression in Escherichia coli:current status and future perspectives[J]. Open Biology, 2016, 6(8):160196.
    [16] KAUR J, KUMAR A, KAUR J. Strategies for optimization of heterologous protein expression in E. coli:roadblocks and reinforcements[J]. International Journal of Biological Macromolecules, 2018, 106:803-822.
    [17] LI Z, LI X, HUANG YY, WU YX, LIU RD, ZHOU LL, LIN YX, WU DY, ZHANG L, LIU H, XU XM, YU KQ, ZHANG YX, CUI J, ZHAN CG, WANG X, LUO HB. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44):27381-27387.
    [18] MA C, TAN H, CHOZA J, WANG J. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays[J]. Acta Pharmaceutica Sinica B, 2022, 12(4):1636-1651.
    [19] UNOB Y, UEHARA S, NAKAHARA K, NOBORI H, YAMATSU Y, YAMAMOTO S, MARUYAMA Y, TAODA Y, KASAMATSU K, SUTO T, KOUKI K, NAKAHASHI A, KAWASHIMA S, SANAKI T, TOBA S, UEMURA K, MIZUTARE T, ANDO S, SASAKI M, ORBA Y, et al. Discovery of S-217622, a noncovalent oral SARS-CoV-23CL protease inhibitor clinical candidate for treating COVID-19[J]. Journal of Medicinal Chemistry, 2022, 65(9):6499-6512.
    [20] YAN HH, ZHANG R, YAN GG, LIU XP, LI N, CHEN YY. Validation of baicalein and oridonin as nonspecific SARS-CoV-2 main protease inhibitors[J]. Phytotherapy Research, 2023. DOI:10.1002/ptr.7829.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张锐,闫浩浩,刘志成,刘晓丽,闫干干,刘晓平,陈云雨. 新冠病毒主蛋白酶特异性荧光底物ddRFP-M的制备与鉴定[J]. 生物工程学报, 2024, 40(2): 496-506

复制
相关视频

分享
文章指标
  • 点击次数:324
  • 下载次数: 966
  • HTML阅读次数: 473
  • 引用次数: 0
历史
  • 收稿日期:2023-07-11
  • 最后修改日期:2023-09-27
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-02-25
文章二维码
您是第6359266位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司