苹果柠檬酸合酶3基因家族成员鉴定及表达分析
作者:
基金项目:

甘肃省大学生创新创业训练计划(S202210733008);甘肃省科技计划项目(21JR7RA845);天水市秦州区科技支撑计划项目(2021-JHGLG-9885);甘肃农业大学2021年度盛彤笙创新基金专项项目(GSAU-STS-2021-28)


Identification and expression analysis of citrate synthase 3 gene family members in apple
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    柠檬酸合酶(citrate synthase 3, CS3)是细胞代谢途径中的关键酶之一,其活性调节着生物体的物质和能量代谢过程。本研究旨在从苹果全基因组中鉴定CS3基因家族成员,并进行生物信息学和表达模式分析,为研究苹果CS3基因的潜在功能提供理论基础。利用BLASTp基于GDR数据库鉴定苹果CS3家族成员,通过Pfam、SMART、MEGA5.0、clustalx.exe、ExPASy Proteomics Server、MEGAX、SOPMA、MEME和WoLF PSORT等软件分析CS3蛋白序列基本信息、亚细胞定位情况、结构域组成、系统进化关系以及染色体定位情况。利用酸含量的测定和实时荧光定量PCR (real-time fluorescence quantitative polymerase chain reaction, qRT-PCR)技术检测苹果6个CS3的组织表达和诱导表达特性。苹果CS3基因家族包含6个成员,这些CS3蛋白包括473−608个不等的氨基酸残基,等电点分布在7.21−8.82。亚细胞定位结果显示CS3蛋白分别定位在线粒体和叶绿体。系统进化分析可将其分为3类,各亚家族基因数量分别为2个。染色体定位结果显示,CS3基因分布在苹果不同的染色体上。蛋白二级结构以a-螺旋为主,其次是无规则卷曲,b-转角所占比例最小。筛选的6个家族成员在不同苹果组织中均有表达,整体表达趋势从高到低依次为MdCS3.4相对表达含量最高,MdCS3.6次之,其他家族成员相对表达量依次为MdCS3.3>MdCS3.2>MdCS3.1>MdCS3.5。qRT-PCR结果显示,MdCS3.1MdCS3.3基因在酸含量较低的‘成纪1号’果肉中相对表达量最高,酸含量较高的‘艾斯达’果肉中MdCS3.2MdCS3.3基因相对表达量最高。因此,本研究对不同苹果品种中CS3基因相对表达量进行了检测,并分析了其在苹果果实酸合成过程中的作用。结果表明,CS3基因在不同苹果品种中的相对表达量存在差异,为后续研究苹果品质形成机制提供了参考。

    Abstract:

    As one of the key enzymes in cell metabolism, the activity of citrate synthase 3 (CS3) regulates the substance and energy metabolism of organisms. The protein members of CS3 family were identified from the whole genome of apple, and bioinformatics analysis was performed and expression patterns were analyzed to provide a theoretical basis for studying the potential function of CS3 gene in apple. BLASTp was used to identify members of the apple CS3 family based on the GDR database, and the basic information of CS3 protein sequence, subcellular localization, domain composition, phylogenetic relationship and chromosome localization were analyzed by Pfam, SMART, MEGA5.0, clustalx.exe, ExPASy Proteomics Server, MEGAX, SOPMA, MEME, WoLF PSORT and other software. The tissue expression and inducible expression characteristics of 6 CS3 genes in apple were determined by acid content and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Apple CS3 gene family contains 6 members, and these CS3 proteins contain 473-608 amino acid residues, with isoelectric point distribution between 7.21 and 8.82. Subcellular localization results showed that CS3 protein was located in mitochondria and chloroplasts, respectively. Phylogenetic analysis divided them into 3 categories, and the number of genes in each subfamily was 2. Chromosome localization analysis showed that CS3 gene was distributed on different chromosomes of apple. The secondary structure of protein is mainly a-helix, followed by random curling, and the proportion of b-angle is the smallest. The 6 members were all expressed in different apple tissues. The overall expression trend from high to low was the highest relative expression content of MdCS3.4, followed by MdCS3.6, and the relative expression level of other members was in the order of MdCS3.3>MdCS3.2>MdCS3.1>MdCS3.5. qRT-PCR results showed that MdCS3.1 and MdCS3.3 genes had the highest relative expression in the pulp of ‘Chengji No. 1’ with low acid content, and MdCS3.2 and MdCS3.3 genes in the pulp of ‘Asda’ with higher acid content had the highest relative expression. Therefore, in this study, the relative expression of CS3 gene in apple cultivars with different acid content in different apple varieties was detected, and its role in apple fruit acid synthesis was analyzed. The experimental results showed that the relative expression of CS3 gene in different apple varieties was different, which provided a reference for the subsequent study of the quality formation mechanism of apple.

    参考文献
    [1] BORSANI J, BUDDE CO, PORRINI L, LAUXMANN MA, LOMBARDO VA, MURRAY R, ANDREO CS, DRINCOVICH MF, LARA MV. Carbon metabolism of peach fruit after harvest:changes in enzymes involved in organic acid and sugar level modifications[J]. Journal of Experimental Botany, 2009, 60(6):1823-1837.
    [2] ETIENNE C, MOING A, DIRLEWANGER E, RAYMOND P, MONET R, ROTHAN C. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation:involvement in regulating peach fruit acidity[J]. Physiologia Plantarum, 2002, 114(2):259-270.
    [3] ETIENNE A, GÉNARD M, LOBIT P, MBEGUIÉ-A-MBÉGUIÉ D, BUGAUD C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells[J]. Journal of Experimental Botany, 2013, 64(6):1451-1469.
    [4] 胡利华, 吴慧敏, 周泽民, 林拥军. 利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86[J]. 分子植物育种, 2006, 4(2):160-166. HU LH, WU HM, ZHOU ZM, LIN YJ. Introduction of citrate synthase gene (CS) into an elite indica rice restorer line minghui 86 by a grobacterium-mediated method[J]. Molecular Plant Breeding, 2006, 4(2):160-166(in Chinese)
    [5] 叶思诚, 姚小华, 王开良, 林萍, 龚洪恩, 卓仁英. 油茶柠檬酸合成酶(CS)基因的克隆和表达分析[J]. 植物研究, 2016, 36(4):556-564. YE SC, YAO XH, WANG KL, LIN P, GONG HE, ZHUO RY. Cloning and expression analysis of citrate synthase (CS) gene in Camellia oleifera[J]. Bulletin of Botanical Research, 2016, 36(4):556-564(in Chinese).
    [6] 王奇峰, 胡清泉, 赵玥, 易琼, 李昆志, 玉永雄, 陈丽梅. 光诱导和组成型启动子控制柠檬酸合酶基因过量表达对转基因烟草耐铝性影响的比较[J]. 浙江大学学报(农业与生命科学版), 2011, 37(1):31-39. WANG QF, HU QQ, ZHAO Y, YI Q, LI KZ, YU YX, CHEN LM. Comparison study on effects of overexpressing citrate synthase driven by light-inducible promoter and constitutive promoter on Al tolerance of transgenic tobacco plants[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2011, 37(1):31-39(in Chinese).
    [7] 靳苗苗, 杨青川, 金洪, 康俊梅, 龙瑞才. 紫花苜蓿柠檬酸合成酶基因的克隆及对烟草的转化[J]. 草地学报, 2010, 18(4):550-555. JIN MM, YANG QC, JIN H, KANG JM, LONG RC. Cloning of alfalfa citrate synthase gene and transformation of tobacco[J]. Acta Agrectir Sinica, 2010, 18(4):550-555(in Chinese).
    [8] 王滕旭, 李正国, 杨迎伍, 邓伟. 甜橙柠檬酸合酶基因的克隆及其表达分析[J]. 中国农学通报, 2010, 26(10):65-69. WANG TX, LI ZG, YANG YW, DENG W. Cloning and expression analysis of citrate synthase gene in orange[J]. Chinese Agricultural Science Bulletin, 2010, 26(10):65-69(in Chinese).
    [9] 迟光红, 周雪丽, 李美英, 徐碧玉, 金志强. 香蕉柠檬酸合酶基因MaGCS的克隆及生物信息学分析[J]. 热带农业科学, 2009, 29(8):12-18. CHI GH, ZHOU XL, LI MY, XU BY, JIN ZQ. Cloning and bioinformatics analysis of banana citrate synthase gene MaGCS[J]. Chinese Journal of Tropical Agriculture, 2009, 29(8):12-18(in Chinese).
    [10] 赵宝庆, 任伟超, 王震, 李洪源, 徐姣. 酸橙柠檬酸合酶基因电子克隆和生物信息学分析[J]. 东北林业大学学报, 2019, 47(12):79-83. ZHAO BQ, REN WC, WANG Z, LI HY, XU J. In silico cloning and bioinformatics analysis of citrate synthase gene from Citrus aurantium[J]. Journal of Northeast Forestry University, 2019, 47(12):79-83(in Chinese).
    [11] 欧金梅, 杨许, 单春苗, 张声祥, 施圆圆, 吴家文, 黄璐琦, 王瑞. 榔梅果实转录组分析及其柠檬酸生物合成途径关键酶基因结构与功能预测[J]. 中国中药杂志, 2020, 45(19):4606-4616. OU JM, YANG X, SHAN CM, ZHANG SX, SHI YY, WU JW, HUANG LQ, WANG R. Transcriptome analysis of "Langmei" fruits and key enzyme genes structure and function prediction involved in citric acid biosynthesis[J]. China Journal of Chinese Materia Medica, 2020, 45(19):4606-4616(in Chinese).
    [12] IANNETTA PPM, ESCOBAR NM, ROSS HA, SOULEYRE EJF, HANCOCK RD, WITTE CP, DAVIES HV. Identification, cloning and expression analysis of strawberry (Fragaria x ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase[J]. Physiologia Plantarum, 2004, 121(1):15-26.
    [13] PRACHAROENWATTANA I, CORNAH JE, SMITH SM. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination[J]. The Plant Cell, 2005, 17(7):2037-2048.
    [14] GRZEMSKI W, AKOWSKI JP, KAHN ML. Probing the Sinorhizobium meliloti-alfalfa symbiosis using temperature-sensitive and impaired-function citrate synthase mutants[J]. Molecular Plant-Microbe Interactions®, 2005, 18(2):134-141.
    [15] 丛俊超, 胡华兵, 王荣华, 刘大丽, 吴则东, 王茂芊. 不同浓度柠檬酸对甜菜种子的引发影响[J]. 中国农学通报, 2022, 38(20):13-19. CONG JC, HU HB, WANG RH, LIU DL, WU ZD, WANG MQ. Effects of different concentrations of citric acid on sugar beet seeds[J]. Chinese Agricultural Science Bulletin, 2022, 38(20):13-19(in Chinese).
    [16] 乃国洁, 卢世雄, 马维峰, 李艳梅, 陈佰鸿, 毛娟. 葡萄EIN3/EIL转录因子家族成员鉴定及表达特征分析[J]. 果树学报, 2021, 38(6):856-870. NAI GJ, LU SX, MA WF, LI YM, CHEN BH, MAO J. Identification and expression characteristics of EIN3/EIL transcription factor family members in grapes[J]. Journal of Pomology, 2021, 38(6):856-870(in Chinese).
    [17] 童晋, 詹高淼, 王新发, 刘贵华, 华玮, 王汉中. 油菜柠檬酸合酶基因的克隆及在逆境下的表达[J]. 作物学报, 2009, 35(1):33-40. TONG J, ZHAN GM, WANG XF, LIU GH, HUA W, WANG HZ. Cloning of citrate synthase gene in rapeseed (Brassica napus L.) and its expression under stresses[J]. Acta Agronomica Sinica, 2009, 35(1):33-40(in Chinese).
    [18] 张珊珊, 明凤, 路群, 郭滨, 沈大棱. 水稻柠檬酸合酶编码基因的初步研究[J]. 中国水稻科学, 2005, (6):501-505. ZHANG SS, MING F, LU Q, GUO B, SHEN DL. Molecular cloning and characterization of citrate synthase gene in rice (Oryza sativa)[J]. Chinese Journal of Rice Science, 2005, (6):501-505(in Chinese).
    [19] 梁俊, 郭燕, 刘玉莲, 李敏敏, 赵政阳. 不同品种苹果果实中糖酸组成与含量分析[J]. 西北农林科技大学学报(自然科学版), 2011, 39(10):163-170. LIANG J, GUO Y, LIU YL, LI MM, ZHAO ZY. Analysis of contents and constituents of sugar and organic acid in different apple cultivars[J]. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(10):163-170(in Chinese).
    [20] SARADHULDHAT P, PAULL RE. Pineapple organic acid metabolism and accumulation during fruit development[J]. Scientia Horticulturae, 2007, 112(3):297-303.
    [21] MA BQ, YUAN YY, GAO M, LI CY, OGUTU C, LI MJ, MA FW. Determination of predominant organic acid components in Malus species:correlation with apple domestication[J]. Metabolites, 2018, 8(4):74.
    [22] LÓPEZ ML, VILLATORO C, FUENTES T, GRAELL J, LARA I, ECHEVERRÍA G. Volatile compounds, quality parameters and consumer acceptance of 'Pink Lady®' apples stored in different conditions[J]. Postharvest Biology and Technology, 2007, 43(1):55-66.
    [23] KOCHIAN LV, PIÑEROS MA, HOEKENGA OA. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity[J]. Plant and Soil, 2005, 274(1/2):175-195.
    [24] LI XF, MA JF, MATSUMOTO H. Aluminum-induced secretion of both citrate and malate in rye[J]. Plant and Soil, 2002, 242(2):235-243.
    [25] 凌桂芝, 石保峰, 黄永禄, 李耀燕, 玉永雄, 黎晓峰. 铝胁迫下黑麦根尖分泌有机酸和钾离子的研究[J]. 植物营养与肥料学报, 2010, 16(4):893-898. LING GZ, SHI BF, HUANG YL, LI YY, YU YX, LI XF. Secretion of organic acid anions and potassium from root apices under Al stress in Secale cereale L.[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4):893-898(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李心蕊,李文芳,霍嘉兴,李龙,陈佰鸿,郭志刚,马宗桓. 苹果柠檬酸合酶3基因家族成员鉴定及表达分析[J]. 生物工程学报, 2024, 40(1): 137-149

复制
分享
文章指标
  • 点击次数:481
  • 下载次数: 1139
  • HTML阅读次数: 663
  • 引用次数: 0
历史
  • 收稿日期:2023-03-05
  • 最后修改日期:2023-05-22
  • 在线发布日期: 2024-01-04
  • 出版日期: 2024-01-25
文章二维码
您是第5993463位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司