黄酮6位羟基化酶催化机制的理论研究与应用
作者:
基金项目:

中国博士后科学基金(2019M661032);天津市合成生物技术创新能力提升行动(TSBICIP-CYFH-011)


Theoretical analysis and practical applications of the catalytic mechanism of flavonoid 6-hydroxylase
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    灯盏乙素发酵生产过程中,黄酮6位羟基化酶催化效率不足,导致产生至少约18%的副产物。本研究以2种黄酮6位羟基化酶CYP82D4与CYP706X为研究目标,通过分子动力学模拟与量子化学计算,对两种黄酮6位羟基化酶的催化机制进行解析。结果表明,CYP82D4与CYP706X在反应决速步的能垒几乎相同,应当具有相似的反应速率,而CYP82D4相对较小的底物结合能可能有利于产物释放,是其具有更高催化效率的直接原因。最后,基于对底物进出过程的研究,CYP82D4的L540A突变将催化效率提高了1.37倍,证明了理论计算指导黄酮6位羟基化酶改造优化的可行性。本研究揭示了黄酮6位羟化酶的催化机制,为对其进行改造优化以提高灯盏乙素的发酵生产效率提供了参考。

    Abstract:

    Insufficient catalytic efficiency of flavonoid 6-hydroxylases in the fermentative production of scutellarin leads to the formation of at least about 18% of by-products. Here, the catalytic mechanisms of two flavonoid 6-hydroxylases, CYP82D4 and CYP706X, were investigated by molecular dynamics simulations and quantum chemical calculations. Our results show that CYP82D4 and CYP706X have almost identical energy barriers at the rate-determining step and thus similar reaction rates, while the relatively low substrate binding energy of CYP82D4 may facilitate product release, which is directly responsible for its higher catalytic efficiency. Based on the study of substrate entry and release processes, the catalytic efficiency of the L540A mutation of CYP82D4 increased by 1.37-fold, demonstrating the feasibility of theoretical calculations-guided engineering of flavonoid 6-hydroxylase. Overall, this study reveals the catalytic mechanism of flavonoid 6-hydroxylases, which may facilitate the modification and optimization of flavonoid 6-hydroxylases for efficient fermentative production of scutellarin.

    参考文献
    [1] YAO LH, JIANG YM, SHI J, TOMÁS-BARBERÁN FA, DATTA N, SINGANUSONG R, CHEN SS. Flavonoids in food and their health benefits[J]. Plant Foods for Human Nutrition, 2004, 59(3):113-122.
    [2] GAO JL, CHEN G, HE HQ, LIU C, XIONG XJ, LI J, WANG J. Therapeutic effects of breviscapine in cardiovascular diseases:a review[J]. Frontiers in Pharmacology, 2017, 8:289.
    [3] LIU XN, CHENG J, ZHANG GH, DING WT, DUAN LJ, YANG J, KUI L, CHENG XZ, RUAN JX, FAN W, CHEN JW, LONG GQ, ZHAO Y, CAI J, WANG W, MA YH, DONG Y, YANG SC, JIANG HF. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches[J]. Nature Communications, 2018, 9:448.
    [4] WANG YN, LIU XN, CHEN BH, LIU W, GUO ZK, LIU XY, ZHU XX, LIU JY, ZHANG J, LI J, ZHANG L, GAO YD, ZHANG GH, WANG Y, CHOUDHARY MI, YANG SC, JIANG HF. Metabolic engineering of Yarrowia lipolytica for scutellarin production[J]. Synthetic and Systems Biotechnology, 2022, 7(3):958-964.
    [5] ZHANG WD, CHEN WS, WANG YH, YANG GJ, KONG D, LI HT. Studies on the flavone glycosides from the extract of Erigeron breviscapus[J]. Chinese Traditional and Herbal Drugs, 2000, 31:565-566.
    [6] LIU XN, CHENG J, ZHU XX, ZHANG GH, YANG SC, GUO XX, JIANG HF, MA YH. De novo biosynthesis of multiple pinocembrin derivatives in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2020, 9(11):3042-3051.
    [7] JUMPER J, EVANS R, PRITZEL A, GREEN T, FIGURNOV M, RONNEBERGER O, TUNYASUVUNAKOOL K, BATES R, ŽÍDEK A, POTAPENKO A, BRIDGLAND A, MEYER C, KOHL SAA, BALLARD AJ, COWIE A, ROMERA-PAREDES B, NIKOLOV S, JAIN R, ADLER J, BACK T, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583-589.
    [8] COMBS SA, DELUCA SL, DELUCA SH, LEMMON GH, NANNEMANN DP, NGUYEN ED, WILLIS JR, SHEEHAN JH, MEILER J. Small-molecule ligand docking into comparative models with Rosetta[J]. Nature Protocols, 2013, 8(7):1277-1298.
    [9] SHAHROKH K, ORENDT A, YOST GS, CHEATHAM TE 3rd. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle[J]. Journal of Computational Chemistry, 2012, 33(2):119-133.
    [10] NEESE F. The ORCA program system[J]. WIREs Computational Molecular Science, 2012, 2(1):73-78.
    [11] CALDEWEYHER E, MEWES JM, EHLERT S, GRIMME S. Extension and evaluation of the D4 London-dispersion model for periodic systems[J]. Physical Chemistry Chemical Physics, 2020, 22(16):8499-8512.
    [12] LU T, CHEN FW. Multiwfn:a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580-592.
    [13] SALOMON-FERRER R, CASE DA, WALKER RC. An overview of the Amber biomolecular simulation package[J]. Wiley Interdisciplinary Reviews:Computational Molecular Science, 2013, 3(2):198-210.
    [14] WANG JM, WOLF RM, CALDWELL JW, KOLLMAN PA, CASE DA. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9):1157-1174.
    [15] TIAN C, KASAVAJHALA K, BELFON KAA, RAGUETTE L, HUANG H, MIGUES AN, BICKEL J, WANG YZ, PINCAY J, WU Q, SIMMERLING C. ff19SB:amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution[J]. Journal of Chemical Theory and Computation, 2020, 16(1):528-552.
    [16] IZADI S, ANANDAKRISHNAN R, ONUFRIEV AV. Building water models:a different approach[J]. The Journal of Physical Chemistry Letters, 2014, 5(21):3863-3871.
    [17] LU Y, FARROW MR, FAYON P, LOGSDAIL AJ, SOKOL AA, CATLOW CRA, SHERWOOD P, KEAL TW. Open-source, python-based redevelopment of the ChemShell multiscale QM/MM environment[J]. Journal of Chemical Theory and Computation, 2019, 15(2):1317-1328.
    [18] BARONE V, COSSI M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. The Journal of Physical Chemistry A, 1998, 102(11):1995-2001.
    [19] SHENG X, KAZEMI M, PLANAS F, HIMO F. Modeling enzymatic enantioselectivity using quantum chemical methodology[J]. ACS Catalysis, 2020, 10(11):6430-6449.
    [20] BATHELT CM, RIDDER L, MULHOLLAND AJ, HARVEY JN. Mechanism and structure-reactivity relationships for aromatic hydroxylation by cytochrome P450[J]. Organic & Biomolecular Chemistry, 2004, 2(20):2998-3005.
    [21] ZHAO Q, CUI MY, LEVSH O, YANG DF, LIU J, LI J, HILL L, YANG L, HU YH, WENG JK, CHEN XY, MARTIN C. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4'-deoxyflavones in Scutellaria baicalensis[J]. Molecular Plant, 2018, 11(1):135-148.
    [22] de VISSER SP, SHAIK S. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome P450 enzymes[J]. Journal of the American Chemical Society, 2003, 125(24):7413-7424.
    [23] ZHOU JH, ZHANG X, LI YW, FENG SS, ZHANG QZ, WANG WX. Endocrine-disrupting metabolic activation of 2-nitrofluorene catalyzed by human cytochrome P4501A1:a QM/MM approach[J]. Environment International, 2022, 166:107355.
    [24] KUMAR D, SASTRY GN, de VISSER SP. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes[J]. The Journal of Physical Chemistry B, 2012, 116(1):718-730.
    [25] HUANGXY, GROVES JT. Beyond ferryl-mediated hydroxylation:40 years of the rebound mechanism and C−H activation[J]. JBIC Journal of Biological Inorganic Chemistry, 2017, 22(2):185-207.
    [26] GUROFF G, RENSON J, UDENFRIEND S, DALY JW, JERINA DM, WITKOP B. Hydroxylation-induced migration:the NIH shift[J]. Science, 1967, 157(3796):1524-1530.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白杰,李从雨,张鹤渐,黄蓉,张磊,王千,刘晓楠,骆健美,江会锋. 黄酮6位羟基化酶催化机制的理论研究与应用[J]. 生物工程学报, 2023, 39(11): 4635-4646

复制
分享
文章指标
  • 点击次数:259
  • 下载次数: 919
  • HTML阅读次数: 713
  • 引用次数: 0
历史
  • 收稿日期:2023-03-25
  • 录用日期:2023-06-15
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第6348223位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司