多细胞耦合转化N-乙酰氨基葡萄糖和乳糖生产唾液酸乳糖
作者:
基金项目:

国家博士后特别资助项目(2014T70472); 中国博士后科学基金(2012M20996); 江苏省博士后基金(1301011B);解放军后勤保障部开放课题(ZZCWS21J2001);汤臣倍健营养科学研究基金开放课题(TY202101096)


Multicellular coupling fermentation for 3ʹ-sialyllactose conversion using N-acetyl-glucosamine and lactose
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    唾液酸乳糖是母乳寡糖(human milk oligosaccharides, HMOs)中含量最丰富的唾液酸化低聚糖之一,对婴幼儿的健康发育有重要作用,但是其目前缺乏高效、廉价的生产工艺。针对该问题,本研究建立了多菌株两步法耦合生物合成唾液酸乳糖方法。第一步构建2株工程菌,大肠杆菌JM109(DE3)/pET28a-BT0453和JM109(DE3)/pET28a-nanA,用于耦合合成中间产物N-乙酰神经氨酸,在2株工程菌株细胞生物量比为1:1,反应时间为32 h的条件下,得到的N-乙酰神经氨酸最高产量为20.4 g/L。第二步向上述发酵液中添加大肠杆菌JM109(DE3)/pET28a-neuA、JM109(DE3)/ pET28a-nst和面包酵母,通过三菌株耦合发酵合成3ʹ-唾液酸乳糖(3ʹ-sialyllactose, 3ʹ-SL)。在底物N-乙酰氨基葡萄糖、乳糖浓度均为200 mmol/L,面包酵母细胞生物量为150 g/L,辅因子Mg2+浓度为20 mmol/L的优化条件下,发酵24 h,发酵液中3ʹ-唾液酸乳糖的最高产量达到55.04 g/L,底物N-乙酰氨基葡萄糖的转化率为43.47%。研究结果为低成本生产3ʹ-唾液酸乳糖提供了一条新的技术路线。

    Abstract:

    Sialyllactose is one of the most abundant sialylated oligosaccharides in human milk oligosaccharides (HMOs), which plays an important role in the healthy development of infants and young children. However, its efficient and cheap production technology is still lacking presently. This study developed a two-step process employing multiple-strains for the production of sialyllactose. In the first step, two engineered strains, E. coli JM109(DE3)/ pET28a-BT0453 and JM109(DE3)/pET28a-nanA, were constructed to synthesize the intermediate N-acetylneuraminic acid. When the ratio of the biomass of the two engineered strains was 1:1 and the reaction time was 32 hours, the maximum yield of N-acetylneuraminic acid was 20.4 g/L. In the second step, E. coli JM109(DE3)/ pET28a-neuA, JM109(DE3)/ pET28a-nst and Baker’s yeast were added to the above fermentation broth to synthesize 3ʹ-sialyllactose (3ʹ-SL). Using optimal conditions including 200 mmol/L N-acetyl-glucosamine and lactose, 150 g/L Baker’s yeast, 20 mmol/L Mg2+, the maximum yield of 3ʹ-SL in the fermentation broth reached 55.04 g/L after 24 hours of fermentation and the conversion rate of the substrate N-acetyl-glucosamine was 43.47%. This research provides an alternative technical route for economical production of 3ʹ-SL.

    参考文献
    [1] CSERNAK O, RACZ B, ALBERTI A, BENI S. Quantitative analysis of 3ʹ- and 6ʹ-sialyllactose in human milk samples by HPLC-MS/MS:a validated method for the comparison of two consecutive lactation periods in the same woman[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 184:113184.
    [2] ASAKUMA S, AKAHORI M, KIMURA K, WATANABE Y, NAKAMURA T, TSUNEMI M, ARAI I, SANAI Y, URASHIMA T. Sialyl oligosaccharides of human colostrum:changes in concentration during the first three days of lactation[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(6):1447-1451.
    [3] FUHRER A, SPRENGER N, KURAKEVICH E, BORSIG L, CHASSARD C, HENNET T. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization[J]. The Journal of Experimental Medicine, 2010, 207(13):2843-2854.
    [4] LI ZK, NI ZJ, CHEN XS, WANG G, WU JY, YAO JM. Multi-enzymatic cascade one-pot biosynthesis of 3ʹ-sialyllactose using engineered Escherichia coli[J]. Molecules (Basel, Switzerland), 2020, 25(16):3567.
    [5] KELLY V, DAVIS S, BERRY S, MELIS J, SPELMAN R, SNELL R, LEHNERT K, PALMER D. Rapid, quantitative analysis of 3ʹ- and 6ʹ-sialyllactose in milk by flow-injection analysis-mass spectrometry:screening of milks for naturally elevated sialyllactose concentration[J]. Journal of Dairy Science, 2013, 96(12):7684-7691.
    [6] DVORAK B. Milk epidermal growth factor and gut protection[J]. The Journal of Pediatrics, 2010, 156(2):S31-S35.
    [7] GUARALDI F, SALVATORI G. Effect of breast and formula feeding on gut microbiota shaping in newborns[J]. Frontiers in Cellular and Infection Microbiology, 2012, 2:94.
    [8] TEN BRUGGENCATE SJ, BOVEE-OUDENHOVEN IM, FEITSMA AL, van HOFFEN E, SCHOTERMAN MH. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides[J]. Nutrition Reviews, 2014, 72(6):377-389.
    [9] WANG B, BRAND-MILLER J. The role and potential of sialic acid in human nutrition[J]. European Journal of Clinical Nutrition, 2003, 57(11):1351-1369.
    [10] BYCH K, MIKŠ MH, JOHANSON T, HEDEROS MJ, VIGSNᴂS LK, BECHER P. Production of HMOs using microbial hosts-from cell engineering to large scale production[J]. Current Opinion in Biotechnology, 2019, 56:130-137.
    [11] FIERFORT N, SAMAIN E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides[J]. Journal of Biotechnology, 2008, 134(3/4):261-265.
    [12] ALATORRE-SANTAMARÍA S, CRUZ A, GONZÁLEZ-OLIVARES L, BAUTISTA M, CASTAÑEDA A, PÉREZ-ESCALANTE E. Human milk oligosaccharides as bioactive compounds in infant formula:recent advances and trends in synthetic methods[J]. Critical Reviews in Food Science and Nutrition, 2020, 62(1):181-214.
    [13] KNORST M, FESSNER WD. CMP-sialate synthetase from Neisseria meningitidis-overexpression and application to the synthesis of oligosaccharides containing modified sialic acids[J]. Advanced Synthesis & Catalysis, 2001, 343(6/7):698-710.
    [14] ENDO T, KOIZUMI S, TABATA K, OZAKI A. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling[J]. Applied Microbiology and Biotechnology, 2000, 53(3):257-261.
    [15] LEE SG, LEE JO, YI JK, KIM BG. Production of cytidine 5ʹ-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst[J]. Biotechnology and Bioengineering, 2002, 80(5):516-524.
    [16] DROUILLARD S, MINE T, KAJIWARA H, YAMAMOTO T, SAMAIN E. Efficient synthesis of 6ʹ-sialyllactose, 6,6ʹ-disialyllactose, and 6ʹ-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224[J]. Carbohydrate Research, 2010, 345(10):1394-1399.
    [17] LU MY, MOSLEH I, ABBASPOURRAD A. Engineered microbial routes for human milk oligosaccharides synthesis[J]. ACS Synthetic Biology, 2021, 10(5):923-938.
    [18] TAO F, ZHANG YN, MA CQ, XU P. One-pot bio-synthesis:N-acetyl-d-neuraminic acid production by a powerful engineered whole-cell catalyst[J]. Scientific Reports, 2011, 1:142.
    [19] ZHANG XL, WANG CY, LV XQ, LIU L, LI JH, DU GC, WANG M, LIU YF. Engineering of synthetic multiplexed pathways for high-level N-acetylneuraminic acid bioproduction[J]. Journal of Agricultural and Food Chemistry, 2021, 69(49):14868-14877.
    [20] MCDONOUGH VM, BUXEDA RJ, BRUNO ME, OZIER-KALOGEROPOULOS O, ADELINE MT, MCMASTER CR, BELL RM, CARMAN GM. Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by CTP[J]. The Journal of Biological Chemistry, 1995, 270(32):18774-18780.
    [21] REN Y, WU H, LI XF, LAI FR, ZHAO GL, XIAO XL. A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity[J]. Applied Biochemistry and Biotechnology, 2014, 172(3):1227-1240.
    [22] GAO XY, ZHANG FF, WU M, WU M, WU ZX, SHANG GD. Production of N-acetyl-d-neuraminic acid by whole cells expressing Bacteroides thetaiotaomicron N-acetyl-d-glucosamine 2-epinnerase and Escherichia coli N-acetyl-d-neuraminic acid aldolase[J]. Journal of Agricultural and Food Chemistry, 2019, 67(22):6285-6291.
    [23] GUO Y, JERS C, MEYER AS, ARNOUS A, LI HY, KIRPEKAR F, MIKKELSEN JD. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3ʹ-sialyl and 6ʹ-sialyl glycans[J]. Journal of Biotechnology, 2014, 170:60-67.
    [24] 张瑞英, 胡岚岚, 武金霞. 单糖薄层层析实验的改进[J]. 实验室科学, 2012, 15(5):45-46, 49. ZHANG RY, HU LL, WU JX. Improvement of the thin layer chromatography of monosaccharide[J]. Laboratory Science, 2012, 15(5):45-46, 49(in Chinese).
    [25] SABINE S, MANUEL E, GROSS BS, BARBARA P, JÜRGEN K, BERND N. Engineering analysis of multienzyme cascade reactions for 3ʹ-sialyllactose synthesis[J]. Biotechnology and Bioengineering, 2021, 118(11):4290-4304.
    [26] PACKER NH, LAWSON MA, JARDINE DR, REDMOND JW. A general approach to desalting oligosaccharides released from glycoproteins[J]. Glycoconjugate Journal, 1998, 15(8):737-47.
    [27] MARU I, OHNISHI J, OHTA Y, TSUKADA Y. Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-d-glucosamine and pyruvate using N-acyl-d-glucosamine 2-epimerase and N-acetylneuraminate lyase[J]. Carbohydrate Research, 1998, 306(4):575-578.
    [28] LEE YC, CHIEN HC R, HSU WH. Production of N-acetyl-d-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase[J]. Journal of Biotechnology, 2007, 129(3):453-460.
    [29] LI ZK, CHEN XS, NI ZJ, YUAN LX, SUN LJ, WANG Y, WU JY, YAO JM. Efficient production of 3ʹ-sialyllactose by single whole-cell in one-pot biosynthesis[J]. Processes, 2021, 9(6):932.
    [30] ZHANG JM, ZHU YY, ZHANG WL, MU W. Efficient production of a functional human milk oligosaccharide 3ʹ-sialyllactose in genetically engineered Escherichia coli[J]. ACS Synthetic Biology, 2022, 11(8):2837-2845.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周文,游星,张洪涛,李忠霞,邓超明,许淳,黎玉. 多细胞耦合转化N-乙酰氨基葡萄糖和乳糖生产唾液酸乳糖[J]. 生物工程学报, 2023, 39(11): 4621-4634

复制
分享
文章指标
  • 点击次数:289
  • 下载次数: 1066
  • HTML阅读次数: 613
  • 引用次数: 0
历史
  • 收稿日期:2023-03-01
  • 录用日期:2023-04-27
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第5993529位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司