放线菌环二肽类活性天然产物生物合成研究进展
作者:
基金项目:

国家自然科学基金(32060021)


Advances in the biosynthesis of cyclodipeptide type natural products derived from actinomycetes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    环二肽(cyclodipeptide, CDP)是一类由2个α-氨基酸缩合而成的最小环肽分子,也可称为二酮哌嗪类化合物(diketopiperazines, DKPs)。CDP具有稳定的DKP环状骨架结构,活性广泛而显著,药用前景良好,发掘意义重大。放线菌是重要的CDP生产菌,同时具有非核糖体肽合成酶(nonribosomal peptide synthetase, NRPS)与环二肽合酶(cyclodipeptide synthase, CDPS)两种DKP骨架合成催化酶,并从中发现多种骨架结构修饰酶,研究开发价值巨大。本文系统介绍了放线菌CDP类活性化合物的DKP骨架合成途径及其结构修饰机制两方面的研究工作,以期为新型CDP类天然产物的发掘、新颖CDP分子生物合成机制的阐明及合成生物学设计与应用等领域的研究与实践提供参考。

    Abstract:

    Cyclodipeptide (CDP) composed of two amino acids is the simplest cyclic peptide. These two amino acids form a typical diketopiperazine (DKP) ring by linking each other with peptide bonds. This characteristic stable ring skeleton is the foundation of CDP to display extensive and excellent bioactivities, which is beneficial for CDPs’ pharmaceutical research and development. The natural CDP products are well isolated from actinomycetes. These bacteria can synthesize DKP backbones with nonribosomal peptide synthetase (NRPS) or cyclodipeptide synthase (CDPS). Moreover, actinomycetes could produce a variety of CDPs through different enzymatic modification. The presence of these abundant and diversified catalysis indicates that actinomycetes are promising microbial resource for exploring CDPs. This review summarized the pathways for DKP backbones biosynthesis and their post-modification mechanism in actinomycetes. The aim of this review was to accelerate the genome mining of CDPs and their isolation, purification and structure identification, and to facilitate revealing the biosynthesis mechanism of novel CDPs as well as their synthetic biology design.

    参考文献
    [1] LI WL, XIA J. Recent advances in diketopiperazines biosynthesis[J]. Microbiology China, 2014, 41(1): 111-121 (in Chinese). 李文利, 夏娟. 二酮哌嗪类化合物生物合成研究进展[J]. 微生物学通报, 2014, 41(1): 111-121.
    [2] BORTHWICK AD. 2,5-diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products[J]. Chemical Reviews, 2012, 112(7): 3641-3716.
    [3] GIESSEN TW, MARAHIEL MA. The tRNA-dependent biosynthesis of modified cyclic dipeptides[J]. International Journal of Molecular Sciences, 2014, 15(8): 14610-14631.
    [4] BALACHANDRA C, PADHI D, GOVINDARAJU T. Cyclic dipeptide: a privileged molecular scaffold to derive structural diversity and functional utility[J]. ChemMedChem, 2021, 16(17): 2558-2587.
    [5] MOSETTI V, ROSETTI B, PIERRI G, BELLOTTO O, ADORINNI S, BANDIERA A, ADAMI G, TEDESCO C, CROSERA M, MAGNANO GC, MARCHESAN S. Cyclodipeptides: from their green synthesis to anti-age activity[J]. Biomedicines, 2022, 10(10): 2342.
    [6] ZHANG HB, NING X, HANG H, RU XY, LI HC, LI YH, WANG LZ, ZHANG X, YU SJ, QIAO YY, WANG X, WANG PG. Total synthesis of thaxtomin A and its stereoisomers and findings of their biological activities[J]. Organic Letters, 2013, 15(22): 5670-5673.
    [7] CLARKE CR, KRAMER CG, KOTHA RR, LUTHRIA DL. The phytotoxin thaxtomin A is the primary virulence determinant for scab disease of beet, carrot, and radish caused by Streptomyces scabiei[J]. Phytopathology®, 2022, 112(11): 2288-2295.
    [8] GONDRY M, LAUTRU S, FUSAI G, MEUNIER G, MÉNEZ A, GENET R. Cyclic dipeptide oxidase from Streptomyces noursei. Isolation, purification and partial characterization of a novel, amino acyl alpha, beta-dehydrogenase[J]. European Journal of Biochemistry, 2001, 268(6): 1712-1721.
    [9] KOHN H, WIDGER W. The molecular basis for the mode of action of bicyclomycin[J]. Current Drug Target-Infectious Disorders, 2005, 5(3): 273-295.
    [10] WANG WJ, ZHU XL, LUO H, WANG Z, HONG AJ, ZENG J, LI L, WANG D, DENG XM, ZHAO XL. Bicyclomycin activity against multidrug-resistant Gram-negative pathogens[J]. Microbiology Spectrum, 2023, 11(1): e03790-22.
    [11] MALIT JJL, LIU WC, CHENG AF, SAHA S, LIU LL, QIAN PY. Global genome mining reveals a cytochrome P450-catalyzed cyclization of crownlike cyclodipeptides with neuroprotective activity[J]. Organic Letters, 2021, 23(17): 6601-6605.
    [12] LIU J, LI SM. Genomics-guided efficient identification of 2,5-diketopiperazine derivatives from actinobacteria[J]. ChemBioChem, 2023, 24(3): e202200502.
    [13] ZHANG JX, YAO TT, LIU J, LI HY, LI WL. Recent advances in cyclodipeptide synthases-dependent biosynthetic pathway[J]. Chinese Journal of Organic Chemistry, 2019, 39(2): 328-338 (in Chinese). 张京星, 姚婷婷, 刘晶, 李花月, 李文利. 环二肽合酶生物合成途径研究进展[J]. 有机化学, 2019, 39(2): 328-338.
    [14] CANU N, MOUTIEZ M, BELIN P, GONDRY M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines[J]. Natural Product Reports, 2020, 37(3): 312-321.
    [15] MOUTIEZ M, BELIN P, GONDRY M. Aminoacyl-tRNA-utilizing enzymes in natural product biosynthesis[J]. Chemical Reviews, 2017, 117(8): 5578-5618.
    [16] BELIN P, MOUTIEZ M, LAUTRU S, SEGUIN J, PERNODET JL, GONDRY M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways[J]. Natural Product Reports, 2012, 29(9): 961-979.
    [17] KATSUYAMA Y, MIYANAGA A. Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases[J]. Current Opinion in Chemical Biology, 2022, 71: 102223.
    [18] HEALY FG, WACH M, KRASNOFF SB, GIBSON DM, LORIA R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity[J]. Molecular Microbiology, 2000, 38(4): 794-804.
    [19] JIANG GD, ZHANG YC, POWELL MM, ZHANG PL, ZUO R, ZHANG Y, KALLIFIDAS D, TIEU AM, LUESCH H, LORIA R, DING YS. High-yield production of herbicidal thaxtomins and thaxtomin analogs in a nonpathogenic Streptomyces strain[J]. Applied and Environmental Microbiology, 2018, 84(11): e00164-18.
    [20] WANG LQ, WANG MY, FU YD, HUANG PJ, KONG DK, NIU GQ. Engineered biosynthesis of thaxtomin phytotoxins[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1163-1171.
    [21] SCHULTZ AW, OH DC, CARNEY JR, WILLIAMSON RT, UDWARY DW, JENSEN PR, GOULD SJ, FENICAL W, MOORE BS. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin[J]. Journal of the American Chemical Society, 2008, 130(13): 4507-4516.
    [22] SCHULTZ AW, LEWIS CA, LUZUNG MR, BARAN PS, MOORE BS. Functional characterization of the cyclomarin/cyclomarazine prenyltransferase CymD directs the biosynthesis of unnatural cyclic peptides[J]. Journal of Natural Products, 2010, 73(3): 373-377.
    [23] LAUTRU S, GONDRY M, GENET R, PERNODET JL. The albonoursin gene cluster of S noursei: biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases[J]. Chemistry & Biology, 2002, 9(12): 1355-1364.
    [24] GONDRY M, SAUGUET L, BELIN P, THAI R, AMOUROUX R, TELLIER C, TUPHILE K, JACQUET M, BRAUD S, COURÇON M, MASSON C, DUBOIS S, LAUTRU S, LECOQ A, HASHIMOTO SI, GENET R, PERNODET JL. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes[J]. Nature Chemical Biology, 2009, 5(6): 414-420.
    [25] SAUGUET L, MOUTIEZ M, LI Y, BELIN P, SEGUIN J, LE du MH, THAI R, MASSON C, FONVIELLE M, PERNODET JL, CHARBONNIER JB, GONDRY M. Cyclodipeptide synthases, a family of class-Ⅰ aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis[J]. Nucleic Acids Research, 2011, 39(10): 4475-4489.
    [26] JACQUES IB, MOUTIEZ M, WITWINOWSKI J, DARBON E, MARTEL C, SEGUIN J, FAVRY E, THAI R, LECOQ A, DUBOIS S, PERNODET JL, GONDRY M, BELIN P. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity[J]. Nature Chemical Biology, 2015, 11(9): 721-727.
    [27] MOUTIEZ M, SEGUIN J, FONVIELLE M, BELIN P, JACQUES IB, FAVRY E, ARTHUR M, GONDRY M. Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei[J]. Nucleic Acids Research, 2014, 42(11): 7247-7258.
    [28] MOUTIEZ M, SCHMITT E, SEGUIN J, THAI R, FAVRY E, BELIN P, MECHULAM Y, GONDRY M. Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases[J]. Nature Communications, 2014, 5: 5141.
    [29] SCHMITT E, BOURGEOIS G, GONDRY M, ALEKSANDROV A. Cyclization reaction catalyzed by cyclodipeptide synthases relies on a conserved tyrosine residue[J]. Scientific Reports, 2018, 8: 7031.
    [30] GIESSEN TW, von TESMAR AM, MARAHIEL MA. Insights into the generation of structural diversity in a tRNA-dependent pathway for highly modified bioactive cyclic dipeptides[J]. Chemistry & Biology, 2013, 20(6): 828-838.
    [31] LIU J, HARKEN L, YANG YL, XIE XL, LI SM. Widely distributed bifunctional bacterial cytochrome P450 enzymes catalyze both intramolecular C–C bond formation in cyclo-L-Tyr-L-Tyr and its coupling with nucleobases[J]. Angewandte Chemie International Edition, 2022, 61(21): e202200377.
    [32] PATTESON JB, CAI WL, JOHNSON RA, SANTA MARIA KC, LI B. Identification of the biosynthetic pathway for the antibiotic bicyclomycin[J]. Biochemistry, 2018, 57(1): 61-65.
    [33] MENG S, HAN W, ZHAO J, JIAN XH, PAN HX, TANG GL. A six-oxidase cascade for tandem C–H bond activation revealed by reconstitution of bicyclomycin biosynthesis[J]. Angewandte Chemie International Edition, 2018, 57(3): 719-723.
    [34] HARKEN L, LI SM. Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P450 enzymes[J]. Applied Microbiology and Biotechnology, 2021, 105(6): 2277-2285.
    [35] SUN CH, TIAN WY, LIN Z, QU XD. Biosynthesis of pyrroloindoline-containing natural products[J]. Natural Product Reports, 2022, 39(9): 1721-1765.
    [36] GARCÍA-DOMÍNGUEZ P, AREAL A, ALVAREZ R, de LERA AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines[J]. Natural Product Reports, 2022, 39(6): 1172-1225.
    [37] GIESSEN TW, von TESMAR AM, MARAHIEL MA. A tRNA-dependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines[J]. Biochemistry, 2013, 52(24): 4274-4283.
    [38] JAMES ED, KNUCKLEY B, ALQAHTANI N, PORWAL S, BAN JS, KARTY JA, VISWANATHAN R, LANE AL. Two distinct cyclodipeptide synthases from a marine actinomycete catalyze biosynthesis of the same diketopiperazine natural product[J]. ACS Synthetic Biology, 2016, 5(7): 547-553.
    [39] ALQAHTANI N, PORWAL SK, JAMES ED, BIS DM, KARTY JA, LANE AL, VISWANATHAN R. Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis[J]. Organic & Biomolecular Chemistry, 2015, 13(26): 7177-7192.
    [40] YAO TT, LIU J, LIU ZZ, LI T, LI HY, CHE Q, ZHU TJ, LI DH, GU QQ, LI WL. Genome mining of cyclodipeptide synthases unravels unusual tRNA-dependent diketopiperazine-terpene biosynthetic machinery[J]. Nature Communications, 2018, 9: 4091.
    [41] LIU J, YU HL, LI SM. Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4435-4444.
    [42] YU HL, XIE XL, LI SM. Coupling of guanine with cyclo-L-Trp-L-Trp mediated by a cytochrome P450 homologue from Streptomyces purpureus[J]. Organic Letters, 2018, 20(16): 4921-4925.
    [43] YU HL, XIE XL, LI SM. Coupling of cyclo-L-Trp-L-Trp with hypoxanthine increases the structure diversity of guanitrypmycins[J]. Organic Letters, 2019, 21(22): 9104-9108.
    [44] LIU J, XIE XL, LI SM. Guanitrypmycin biosynthetic pathways imply cytochrome P450 mediated regio- and stereospecific guaninyl-transfer reactions[J]. Angewandte Chemie International Edition, 2019, 58(33): 11534-11540.
    [45] SHI J, XU X, ZHAO ER JUAN, ZHANG B, LI W, ZHAO Y, JIAO RUI HUA, TAN REN XIANG, GE HUI MING. Genome mining and enzymatic total biosynthesis of purincyclamide[J]. Organic Letters, 2019, 21(17): 6825-6829.
    [46] TIAN WY, SUN CH, ZHENG M, HARMER JR, YU MJ, ZHANG YN, PENG HD, ZHU DQ, DENG ZX, CHEN SL, MOBLI M, JIA XY, QU XD. Efficient biosynthesis of heterodimeric C3-aryl pyrroloindoline alkaloids[J]. Nature Communications, 2018, 9: 4428.
    [47] YU HL, LI SM. Two cytochrome P450 enzymes from Streptomyces sp. NRRL S-1868 catalyze distinct dimerization of tryptophan-containing cyclodipeptides[J]. Organic Letters, 2019, 21(17): 7094-7098.
    [48] SHENDE VV, KHATRI Y, NEWMISTER SA, SANDERS JN, LINDOVSKA P, YU FG, DOYON TJ, KIM J, HOUK KN, MOVASSAGHI M, SHERMAN DH. Structure and function of NzeB, a versatile C─C and C─N bond-forming diketopiperazine dimerase[J]. Journal of the American Chemical Society, 2020, 142(41): 17413-17424.
    [49] SUN CH, LUO ZY, ZHANG WL, TIAN WY, PENG HD, LIN Z, DENG ZX, KOBE B, JIA XY, QU XD. Molecular basis of regio- and stereo-specificity in biosynthesis of bacterial heterodimeric diketopiperazines[J]. Nature Communications, 2020, 11: 6251.
    [50] HARKEN L, LIU J, KREUZ O, BERGER R, LI SM. Biosynthesis of guatrypmethine C implies two different oxidases for exo double bond installation at the diketopiperazine ring[J]. ACS Catalysis, 2022, 12(1): 648-654.
    [51] LI HX, QIU Y, GUO CX, HAN M, ZHOU YY, FENG Y, LUO SZ, TONG YG, ZHENG GJ, ZHU SZ. Pyrroloindoline cyclization in tryptophan-containing cyclodipeptides mediated by an unprecedented indole C3 methyltransferase from Streptomyces sp. HPH0547[J]. Chemical Communications, 2019, 55(58): 8390-8393.
    [52] LIU J, XIE XL, LI SM. Increasing cytochrome P450 enzyme diversity by identification of two distinct cyclodipeptide dimerases[J]. Chemical Communications, 2020, 56(75): 11042-11045.
    [53] ZHANG YQ, YAO TT, JIANG YC, LI HY, YUAN WC, LI WL. Deciphering a cyclodipeptide synthase pathway encoding prenylated indole alkaloids in Streptomyces leeuwenhoekii[J]. Applied and Environmental Microbiology, 2021, 87(11): e02525-20.
    [54] MALIT JJL, WU CH, TIAN XY, LIU WC, HUANG DL, SUNG HHY, LIU LL, WILLIAMS ID, QIAN PY. Griseocazines: neuroprotective multiprenylated cyclodipeptides identified through targeted genome mining[J]. Organic Letters, 2022, 24(16): 2967-2972.
    [55] LIU J, YANG YL, HARKEN L, LI SM. Elucidation of the streptoazine biosynthetic pathway in Streptomyces aurantiacus reveals the presence of a promiscuous prenyltransferase/cyclase[J]. Journal of Natural Products, 2021, 84(12): 3100-3109.
    [56] BARRY SM, KERS JA, JOHNSON EG, SONG LJ, ASTON PR, PATEL B, KRASNOFF SB, CRANE BR, GIBSON DM, LORIA R, CHALLIS GL. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis[J]. Nature Chemical Biology, 2012, 8(10): 814-816.
    [57] HEALY FG, KRASNOFF SB, WACH M, GIBSON DM, LORIA R. Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies[J]. Journal of Bacteriology, 2002, 184(7): 2019-2029.
    [58] ALKHALAF LM, BARRY SM, REA DA, GALLO A, GRIFFITHS D, LEWANDOWSKI JR, FULOP V, CHALLIS GL. Binding of distinct substrate conformations enables hydroxylation of remote sites in thaxtomin D by cytochrome P450 TxtC[J]. Journal of the American Chemical Society, 2019, 141(1): 216-222.
    [59] ROOSE BW, CHRISTIANSON DW. Structural basis of tryptophan reverse N-prenylation catalyzed by CymD[J]. Biochemistry, 2019, 58(30): 3232-3242.
    [60] YAO TT, LIU J, JIN EJ, LIU ZZ, LI HY, CHE Q, ZHU TJ, LI DH, LI WL. Expanding the structural diversity of drimentines by exploring the promiscuity of two N-methyltransferases[J]. iScience, 2020, 23(7): 101323.
    [61] SUN CH, PENG HD, ZHANG WL, ZHENG M, TIAN WY, ZHANG YN, LIU HH, LIN Z, DENG ZX, QU XD. Production of heterodimeric diketopiperazines employing a Mycobacterium-based whole-cell biocatalysis system[J]. The Journal of Organic Chemistry, 2021, 86(16): 11189-11197.
    [62] GENILLOUD O. Actinomycetes: still a source of novel antibiotics[J]. Natural Product Reports, 2017, 34(10): 1203-1232.
    [63] GONDRY M, JACQUES IB, THAI R, BABIN M, CANU N, SEGUIN J, BELIN P, PERNODET JL, MOUTIEZ M. A comprehensive overview of the cyclodipeptide synthase family enriched with the characterization of 32 new enzymes[J]. Frontiers in Microbiology, 2018, 9: 46.
    [64] SKINNIDER MA, JOHNSTON CW, MERWIN NJ, DEJONG CA, MAGARVEY NA. Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis[J]. BMC Genomics, 2018, 19(1): 1-11.
    [65] CANU N, BELIN P, THAI R, CORREIA I, LEQUIN O, SEGUIN J, MOUTIEZ M, GONDRY M. Incorporation of non-canonical amino acids into 2,5-diketopiperazines by cyclodipeptide synthases[J]. Angewandte Chemie International Edition, 2018, 57(12): 3118-3122.
    [66] BROCKMEYER K, LI SM. Mutations of residues in pocket P1 of a cyclodipeptide synthase strongly increase product formation[J]. Journal of Natural Products, 2017, 80(11): 2917-2922.
    [67] SUTHERLAND E, HARDING CJ, CZEKSTER CM. Active site remodelling of a cyclodipeptide synthase redefines substrate scope[J]. Communications Chemistry, 2022, 5: 101.
    [68] FOULSTON L. Genome mining and prospects for antibiotic discovery[J]. Current Opinion in Microbiology, 2019, 51: 1-8.
    [69] WU GG, HAN P, ZHONG SZ, XIE YC, ZHU D. The mining of the cyclodipeptide from Streptomyces albovinaceus DSM 40136 through salt stress[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2022, 46(3): 247-250 (in Chinese). 吴贵贵, 韩萍, 钟素珍, 谢运昌, 朱笃. Streptomyces albovinaceus DSM 40136中环二肽的盐胁迫发掘[J]. 江西师范大学学报(自然科学版), 2022, 46(3): 247-250.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄运红,黎金祖,陈思敏,刘文慧,吴妙尔,朱笃,谢运昌. 放线菌环二肽类活性天然产物生物合成研究进展[J]. 生物工程学报, 2023, 39(11): 4497-4516

复制
分享
文章指标
  • 点击次数:277
  • 下载次数: 1116
  • HTML阅读次数: 736
  • 引用次数: 0
历史
  • 收稿日期:2023-02-02
  • 录用日期:2023-04-23
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第6365464位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司