辅因子S-腺苷-L-甲硫氨酸甲基类似物及其应用
作者:
基金项目:

天津市自然科学基金面上项目(20JCYBJC01100)


Synthesis and application of the methyl analogues of S-adenosyl-L-methionine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [94]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    甲基化在生物学过程中发挥着重要作用。S-腺苷-L-甲硫氨酸(S-adenosyl-L-methionine, SAM)作为一种广泛存在于生命体中的辅因子,是大多数生物甲基化反应的甲基供体。SAM依赖型甲基转移酶(methyltransferases, MTase)通过将甲基从SAM分子特异性转移到底物,从而改变底物分子的各种理化性质和生物活性。近年来,许多具有替代甲基取代基的SAM类似物被合成并应用于甲基转移酶,以将不同修饰的基团特异性地转移到甲基转移酶的底物上,从而引入标记官能团或者新的烷基修饰。本文主要综述了近年来该领域不同SAM甲基类似物在合成和应用方面取得的进展,并对这一领域未来的研究方向进行展望。

    Abstract:

    Methylation plays a vital role in biological systems. SAM (S-adenosyl-L-methionine), an abundant cofactor in life, acts as a methyl donor in most biological methylation reactions. SAM-dependent methyltransferases (MTase) transfer a methyl group from SAM to substrates, thereby altering their physicochemical properties or biological activities. In recent years, many SAM analogues with alternative methyl substituents have been synthesized and applied to methyltransferases that specifically transfer different groups to the substrates. These include functional groups for labeling experiments and novel alkyl modifications. This review summarizes the recent progress in the synthesis and application of SAM methyl analogues and prospects for future research directions in this field.

    参考文献
    [1] ZHANG Q, van der DONK WA, LIU W. Radical-mediated enzymatic methylation: a tale of two SAMS[J]. Accounts of Chemical Research, 2012, 45(4): 555-564.
    [2] SCHÖNHERR H, CERNAK T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions[J]. Angewandte Chemie International Edition, 2013, 52(47): 12256-12267.
    [3] HUBER TD, JOHNSON BR, ZHANG JJ, THORSON JS. AdoMet analog synthesis and utilization: current state of the art[J]. Current Opinion in Biotechnology, 2016, 42: 189-197.
    [4] CANTONI GL. S-adenosylmethionine: a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate[J]. The Journal of Biological Chemistry, 1953, 204(1): 403-416.
    [5] BAUERLE MR, SCHWALM EL, BOOKER SJ. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation[J]. The Journal of Biological Chemistry, 2015, 290(7): 3995-4002.
    [6] O'HAGAN D, SCHMIDBERGER JW. Enzymes that catalyse SN2 reaction mechanisms[J]. Natural Product Reports, 2010, 27(6): 900-918.
    [7] MAŁECKI JM, DAVYDOVA E, FALNES PØ. Protein methylation in mitochondria[J]. The Journal of Biological Chemistry, 2022, 298(4): 101791.
    [8] FALNES PØ, JAKOBSSON ME, DAVYDOVA E, HO A, MAŁECKI J. Protein lysine methylation by seven-β-strand methyltransferases[J]. The Biochemical Journal, 2016, 473(14): 1995-2009.
    [9] LAW BJC, BENNETT MR, THOMPSON ML, LEVY C, SHEPHERD SA, LEYS D, MICKLEFIELD J. Effects of active-site modification and quaternary structure on the regioselectivity of catechol-O-methyltransferase[J]. Angewandte Chemie, 2016, 128(8): 2733-2737.
    [10] YAN F, LAMARRE JM, RÖHRICH R, WIESNER J, JOMAA H, MANKIN AS, FUJIMORI DG. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA[J]. Journal of the American Chemical Society, 2010, 132(11): 3953-3964.
    [11] YAN F, FUJIMORI DG. RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 3930-3934.
    [12] GROVE TL, BENNER JS, RADLE MI, AHLUM JH, LANDGRAF BJ, KREBS C, BOOKER SJ. A radically different mechanism for S-adenosylmethionine-dependent methyltransferases[J]. Science, 2011, 332(6029): 604-607.
    [13] FREY PA, HEGEMAN AD, RUZICKA FJ. The radical SAM superfamily[J]. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43(1): 63-88.
    [14] WANG SC, FREY PA. S-adenosylmethionine as an oxidant: the radical SAM superfamily[J]. Trends in Biochemical Sciences, 2007, 32(3): 101-110.
    [15] WOODYER RD, LI GY, ZHAO HM, van der DONK WA. New insight into the mechanism of methyl transfer during the biosynthesis of fosfomycin[J]. Chemical Communications, 2007(4): 359-361.
    [16] van der DONK WA. Rings, radicals, and regeneration: the early years of a bioorganic laboratory[J]. The Journal of Organic Chemistry, 2006, 71(26): 9561-9571.
    [17] BOOKER SJ, GROVE TL. Mechanistic and functional versatility of radical SAM enzymes[J]. F1000 Biology Reports, 2010, 2: 52.
    [18] LIN H. S-adenosylmethionine-dependent alkylation reactions: when are radical reactions used?[J]. Bioorganic Chemistry, 2011, 39(5/6): 161-170.
    [19] JIN WB, WU S, XU YF, YUAN H, TANG GL. Recent advances in HemN-like radical S-adenosyl-L-methionine enzyme-catalyzed reactions[J]. Natural Product Reports, 2020, 37(1): 17-28.
    [20] KLIMAšAUSKAS S, WEINHOLD E. A new tool for biotechnology: AdoMet-dependent methyltransferases[J]. Trends in Biotechnology, 2007, 25(3): 99-104.
    [21] SINGH S, ZHANG JJ, HUBER TD, SUNKARA M, HURLEY K, GOFF RD, WANG GJ, ZHANG W, LIU CM, ROHR J, van LANEN SG, MORRIS AJ, THORSON JS. Facile chemoenzymatic strategies for the synthesis and utilization of S-adenosyl-L-methionine analogues[J]. Angewandte Chemie International Edition, 2014, 53(15): 3965-3969.
    [22] WINTER JM, CHIOU G, BOTHWELL IR, XU W, GARG NK, LUO MK, TANG Y. Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain[J]. Organic Letters, 2013, 15(14): 3774-3777.
    [23] DALHOFF C, LUKINAVIČIUS G, KLIMASAUSKAS S, WEINHOLD E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases[J]. Nature Chemical Biology, 2006, 2(1): 31-32.
    [24] BURGOS ES, SHECHTER D. Chemoenzymatic synthesis of S-nucleosyl amino acids (SNA) analogs of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and uses thereof: US20200239921[P]. 2020-07-30.
    [25] MCKEAN IJW, SADLER JC, CUETOS A, FRESE A, HUMPHREYS LD, GROGAN G, HOSKISSON PA, BURLEY GA. S-adenosyl methionine cofactor modifications enhance the biocatalytic repertoire of small molecule C-alkylation[J]. Angewandte Chemie International Edition, 2019, 58(49): 17583-17588.
    [26] TALUKDAR A, MUKHERJEE A, BHATTACHARYA D. Fascinating transformation of SAM-competitive protein methyltransferase inhibitors from nucleoside analogues to non-nucleoside analogues[J]. Journal of Medicinal Chemistry, 2022, 65(3): 1662-1684.
    [27] PETERLI-ROTH P, MAGUIRE MP, LEON E, RAPOPORT H. Syntheses of 6-deaminosinefungin and (S)-6-methyl-6-deaminosinefungin[J]. The Journal of Organic Chemistry, 1994, 59(15): 4186-4193.
    [28] STECHER H, TENGG M, UEBERBACHER BJ, REMLER P, SCHWAB H, GRIENGL H, GRUBER-KHADJAWI M. Biocatalytic Friedel-Crafts alkylation using non-natural cofactors[J]. Angewandte Chemie International Edition, 2009, 121(50): 9710-9712.
    [29] WANG R, ZHENG WH, YU HQ, DENG HT, LUO MK. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues[J]. Journal of the American Chemical Society, 2011, 133(20): 7648-7651.
    [30] GOYVAERTS V, van SNICK S, D'HUYS L, VITALE R, HELMER LAUER M, WANG S, LEEN V, DEHAEN W, HOFKENS J. Fluorescent SAM analogues for methyltransferase based DNA labeling[J]. Chemical Communications, 2020, 56(22): 3317-3320.
    [31] KOMOTO J, YAMADA T, TAKATA Y, MARKHAM GD, TAKUSAGAWA F. Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met[J]. Biochemistry, 2004, 43(7): 1821-1831.
    [32] WANG R, ISLAM K, LIU Y, ZHENG WH, TANG HP, LAILLER N, BLUM G, DENG HT, LUO MK. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells[J]. Journal of the American Chemical Society, 2013, 135(3): 1048-1056.
    [33] ZANO SP, BHANSALI P, LUNIWAL A, VIOLA RE. Alternative substrates selective for S-adenosylmethionine synthetases from pathogenic bacteria[J]. Archives of Biochemistry and Biophysics, 2013, 536(1): 64-71.
    [34] WIJAYASINGHE YS, BLUMENTHAL RM, VIOLA RE. Producing proficient methyl donors from alternative substrates of S-adenosylmethionine synthetase[J]. Biochemistry, 2014, 53(9): 1521-1526.
    [35] EUSTÁQUIO AS, POJER F, NOEL JP, MOORE BS. Discovery and characterization of a marine bacterial SAM-dependent chlorinase[J]. Nature Chemical Biology, 2008, 4(1): 69-74.
    [36] O'HAGAN D, SCHAFFRATH C, COBB SL, HAMILTON JTG, MURPHY CD. Biosynthesis of an organofluorine molecule[J]. Nature, 2002, 416(6878): 279.
    [37] THOMSEN M, VOGENSEN SB, BUCHARDT J, BURKART MD, CLAUSEN RP. Chemoenzymatic synthesis and in situ application of S-adenosyl-L-methionine analogs[J]. Organic & Biomolecular Chemistry, 2013, 11(43): 7606-7610.
    [38] ANDEXER JN, RICHTER M. Emerging enzymes for ATP regeneration in biocatalytic processes[J]. ChemBioChem, 2015, 16(3): 380-386.
    [39] LIPSON JM, THOMSEN M, MOORE BS, CLAUSEN RP, la CLAIR JJ, BURKART MD. A tandem chemoenzymatic methylation by S-adenosyl-L-methionine[J]. ChemBioChem, 2013, 14(8): 950-953.
    [40] WUOSMAA AM, HAGER LP. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites[J]. Science, 1990, 249(4965): 160-162.
    [41] NI X, HAGER LP. Expression of Batis maritima methyl chloride transferase in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3611-3615.
    [42] LIAO CS, SEEBECK FP. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions[J]. Nature Catalysis, 2019, 2(8): 696-701.
    [43] TANG QY, GRATHWOL CW, ASLAN-ÜZEL AS, WU SK, LINK A, PAVLIDIS IV, BADENHORST CPS, BORNSCHEUER UT. Directed evolution of a halide methyltransferase enables biocatalytic synthesis of diverse SAM analogs[J]. Angewandte Chemie International Edition, 2021, 60(3): 1524-1527.
    [44] SCHÜLKE KH, OSPINA F, HÖRNSCHEMEYER K, GERGEL S, HAMMER SC. Substrate profiling of anion methyltransferases for promiscuous synthesis of S-adenosylmethionine analogs from haloalkanes[J]. ChemBioChem, 2022, 23(4): e202100632.
    [45] PENG J, LIAO C, BAUER C, SEEBECK FP. Fluorinated S‐adenosylmethionine as a reagent for enzyme‐catalyzed fluoromethylation[J]. Angewandte Chemie International Edition, 2021, 60(52): 27178-27183.
    [46] ZHANG CS, WELLER RL, THORSON JS, RAJSKI SR. Natural product diversification using a non-natural cofactor analogue of S-adenosyl-L-methionine[J]. Journal of the American Chemical Society, 2006, 128(9): 2760-2761.
    [47] SMITH ZD, MEISSNER A. DNA methylation: roles in mammalian development[J]. Nature Reviews Genetics, 2013, 14(3): 204-220.
    [48] VRANKEN C, DEEN J, DIRIX L, STAKENBORG T, DEHAEN W, LEEN V, HOFKENS J, NEELY RK. Super-resolution optical DNA mapping via DNA methyltransferase-directed click chemistry[J]. Nucleic Acids Research, 2014, 42(7): e50.
    [49] LEVY-SAKIN M, GRUNWALD A, KIM S, GASSMAN NR, GOTTFRIED A, ANTELMAN J, KIM Y, HO SO, SAMUEL R, MICHALET X, LIN RR, DERTINGER T, KIM AS, CHUNG S, COLYER RA, WEINHOLD E, WEISS S, EBENSTEIN Y. Toward single-molecule optical mapping of the epigenome[J]. ACS Nano, 2014, 8(1): 14-26.
    [50] NEELY RK, DEDECKER P, HOTTA JI, URBANAVIČIŪTĖ G, KLIMAŠAUSKAS S, HOFKENS J. DNA fluorocode: a single molecule, optical map of DNA with nanometre resolution[J]. Chemical Science, 2010, 1(4): 453-460.
    [51] MOTORIN Y, BURHENNE J, TEIMER R, KOYNOV K, WILLNOW S, WEINHOLD E, HELM M. Expanding the chemical scope of RNA: methyltransferases to site-specific alkynylation of RNA for click labeling[J]. Nucleic Acids Research, 2011, 39(5): 1943-1952.
    [52] TOMKUVIENĖ M, CLOUET-D'ORVAL B, ČERNIAUSKAS I, WEINHOLD E, KLIMAŠAUSKAS S. Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases[J]. Nucleic Acids Research, 2012, 40(14): 6765-6773.
    [53] PLOTNIKOVA A, OSIPENKO A, MASEVIČIUS V, VILKAITIS G, KLIMAŠAUSKAS S. Selective covalent labeling of miRNA and siRNA duplexes using HEN1 methyltransferase[J]. Journal of the American Chemical Society, 2014, 136(39): 13550-13553.
    [54] PETERS W, WILLNOW S, DUISKEN M, KLEINE H, MACHEREY T, DUNCAN KE, LITCHFIELD DW, LÜSCHER B, WEINHOLD E. Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling[J]. Angewandte Chemie International Edition, 2010, 49(30): 5170-5173.
    [55] OSBORNE T, WELLER ROSKA RL, RAJSKI SR, THOMPSON PR. In situ generation of a bisubstrate analogue for protein arginine methyltransferase 1[J]. Journal of the American Chemical Society, 2008, 130(14): 4574-4575.
    [56] ISLAM K, ZHENG WH, YU HQ, DENG HT, LUO MK. Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling[J]. ACS Chemical Biology, 2011, 6(7): 679-684.
    [57] ZHANG YX, PAN YB, YANG W, LIU WJ, ZOU HF, ZHAO ZK. Protein arginine allylation and subsequent fluorophore targeting[J]. ChemBioChem, 2013, 14(12): 1438-1443.
    [58] ZHANG YX, PAN YB, LIU WJ, ZHOU YJ, WANG KY, WANG L, SOHAIL M, YE ML, ZOU HF, ZHAO ZK. In vivo protein allylation to capture protein methylation candidates[J]. Chemical Communications, 2016, 52(40): 6689-6692.
    [59] SHIMBA S, BOKAR JA, ROTTMAN F, REDDY R. Accurate and efficient N6-adenosine methylation in spliceosomal U6 small nucelar RNA by HeLa cell extract in vitro[J]. Nucleic Acids Research, 1995, 23(13): 2421-2426.
    [60] WANG FB, SINGH S, ZHANG JJ, HUBER TD, HELMICH KE, SUNKARA M, HURLEY KA, GOFF RD, BINGMAN CA, MORRIS AJ, THORSON JS, PHILLIPS GN JR. Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase sMAT from Sulfolobus solfataricus[J]. The FEBS Journal, 2014, 281(18): 4224-4239.
    [61] SIEGRIST J, NETZER J, MORDHORST S, KARST L, GERHARDT S, EINSLE O, RICHTER M, ANDEXER JN. Functional and structural characterisation of a bacterial O-methyltransferase and factors determining regioselectivity[J]. FEBS Letters, 2017, 591(2): 312-321.
    [62] GOLOVINA AY, SERGIEV PV, GOLOVIN AV, SEREBRYAKOVA MV, DEMINA I, GOVORUN VM, DONTSOVA OA. The yfiC gene of E. coli encodes an adenine-N6-methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC)[J]. RNA, 2009, 15(6): 1134-1141.
    [63] MENDEL M, CHEN KM, HOMOLKA D, GOS P, PANDEY RR, MCCARTHY AA, PILLAI RS. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development[J]. Molecular Cell, 2018, 71(6): 986-1000.e11.
    [64] RUBIN RA, MODRICH P. EcoR I methylase: physical and catalytic properties of the homogeneous enzyme[J]. The Journal of Biological Chemistry, 1977, 252(20): 7265-7272.
    [65] HEVEL JM, PRICE OM. Rapid and direct measurement of methyltransferase activity in about 30 min[J]. Methods, 2020, 175: 3-9.
    [66] WU J, XIE N, FENG Y, ZHENG YG. Scintillation proximity assay of arginine methylation[J]. SLAS Discovery, 2012, 17(2): 237-244.
    [67] ERO R, PEIL L, LIIV A, REMME J. Identification of pseudouridine methyltransferase in Escherichia coli[J]. RNA (New York, NY), 2008, 14(10): 2223-2233.
    [68] LIU JZ, YUE YN, HAN DL, WANG X, FU Y, ZHANG L, JIA GF, YU M, LU ZK, DENG X, DAI Q, CHEN WZ, HE C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nature Chemical Biology, 2014, 10(2): 93-95.
    [69] MORVAN D, DEMIDEM A, GUENIN S, MADELMONT JC. Methionine-dependence phenotype of tumors: metabolite profiling in a melanoma model using L-[methyl-13C] methionine and high-resolution magic angle spinning1H-13C nuclear magnetic resonance spectroscopy[J]. Magnetic Resonance in Medicine, 2006, 55(5): 984-996.
    [70] MUTTACH F, MÄSING F, STUDER A, RENTMEISTER A. New AdoMet analogues as tools for enzymatic transfer of photo-cross-linkers and capturing RNA-protein interactions[J]. Chemistry-a European Journal, 2017, 23(25): 5988-5993.
    [71] MICHAILIDOU F, KLÖCKER N, CORNELISSEN NV, SINGH RK, PETERS A, OVCHARENKO A, KÜMMEL D, RENTMEISTER A. Engineered SAM synthetases for enzymatic generation of AdoMet analogs with photocaging groups and reversible DNA modification in cascade reactions[J]. Angewandte Chemie International Edition, 2021, 60(1): 480-485.
    [72] DALHOFF C, LUKINAVIČIUS G, KLIMAŠAUSKAS S, WEINHOLD E. Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases[J]. Nature Protocols, 2006, 1(4): 1879-1886.
    [73] JALALI E, THORSON JS. Enzyme-mediated bioorthogonal technologies: catalysts, chemoselective reactions and recent methyltransferase applications[J]. Current Opinion in Biotechnology, 2021, 69: 290-298.
    [74] TOMKUVIENĖ M, MICKUTĖ M, VILKAITIS G, KLIMAŠAUSKAS S. Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA[J]. Current Opinion in Biotechnology, 2019, 55: 114-123.
    [75] MUTTACH F, RENTMEISTER A. One-pot modification of 5'-capped RNA based on methionine analogs[J]. Methods, 2016, 107: 3-9.
    [76] DEEN J, VRANKEN C, LEEN V, NEELY RK, JANSSEN KPF, HOFKENS J. Methyltransferase-directed labeling of biomolecules and its applications[J]. Angewandte Chemie International Edition, 2017, 56(19): 5182-5200.
    [77] LUKINAVIČIUS G, TOMKUVIENĖ M, MASEVIČIUS V, KLIMAŠAUSKAS S. Enhanced chemical stability of AdoMet analogues for improved methyltransferase-directed labeling of DNA[J]. ACS Chemical Biology, 2013, 8(6): 1134-1139.
    [78] BOTHWELL IR, LUO MK. Large-scale, protection-free synthesis of Se-adenosyl-L-selenomethionine analogues and their application as cofactor surrogates of methyltransferases[J]. Organic Letters, 2014, 16(11): 3056-3059.
    [79] IWIG DF, GRIPPE AT, MCINTYRE TA, BOOKER SJ. Isotope and elemental effects indicate a rate-limiting methyl transfer as the initial step in the reaction catalyzed by Escherichia coli cyclopropane fatty acid synthase[J]. Biochemistry, 2004, 43(42): 13510-13524.
    [80] WILLNOW S, MARTIN M, LÜSCHER B, WEINHOLD E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases[J]. ChemBioChem, 2012, 13(8): 1167-1173.
    [81] LEE BWK, SUN HG, ZANG TZ, KIM BJ, ALFARO JF, ZHOU ZS. Enzyme-catalyzed transfer of a ketone group from an S-adenosylmethionine analogue: a tool for the functional analysis of methyltransferases[J]. Journal of the American Chemical Society, 2010, 132(11): 3642-3643.
    [82] LI YY, CHEN WS, XIAO Y. Advances in plant caffeic acid-O-methyltransferase[J]. Chinese Journal of Biotechnology, 2022, 38(6): 2187-2200 (in Chinese). 李元玉, 陈万生, 肖莹. 植物咖啡酸-O-甲基转移酶的研究进展[J]. 生物工程学报, 2022, 38(6): 2187-2200.
    [83] WESSJOHANN LA, KEIM J, WEIGEL B, DIPPE M. Alkylating enzymes[J]. Current Opinion in Chemical Biology, 2013, 17(2): 229-235.
    [84] PENG Y, FENG QP, WILK D, ADJEI AA, SALAVAGGIONE OE, WEINSHILBOUM RM, YEE VC. Structural basis of substrate recognition in thiopurine S-methyltransferase[J]. Biochemistry, 2008, 47(23): 6216-6225.
    [85] CARNEY AE, HOLDEN HM. Molecular architecture of TylM1 from Streptomyces fradiae: an N, N-dimethyltransferase involved in the production of dTDP-d-mycaminose[J]. Biochemistry, 2011, 50(5): 780-787.
    [86] LOMAX C, LIU WJ, WU LY, XUE K, XIONG JB, ZHOU JZ, MCGRATH SP, MEHARG AA, MILLER AJ, ZHAO FJ. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672.
    [87] ZHANG XY, SHEN XL, SUN XX, WANG J, YUAN QP. Application of methyltransferases in microbial synthesis of natural products[J]. Chinese Journal of Biotechnology, 2021, 37(6): 1869-1886 (in Chinese). 张香燕, 申晓林, 孙新晓, 王佳, 袁其朋. 甲基转移酶在微生物合成天然产物中的应用[J]. 生物工程学报, 2021, 37(6): 1869-1886.
    [88] KIM J, XIAO H, BONANNO JB, KALYANARAMAN C, BROWN S, TANG XY, AL-OBAIDI NF, PATSKOVSKY Y, BABBITT PC, JACOBSON MP, LEE YS, ALMO SC. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function[J]. Nature, 2013, 498(7452): 123-126.
    [89] KIM J, XIAO H, KOH J, WANG YK, BONANNO JB, THOMAS K, BABBITT PC, BROWN S, LEE YS, ALMO SC. Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification[J]. Nucleic Acids Research, 2015, 43(9): 4602-4613.
    [90] HERBERT AJ, SHEPHERD SA, CRONIN VA, BENNETT MR, SUNG R, MICKLEFIELD J. Engineering orthogonal methyltransferases to create alternative bioalkylation pathways[J]. Angewandte Chemie International Edition, 2020, 59(35): 14950-14956.
    [91] MAHATTHANANCHAI J, DUMAS AM, BODE JW. Catalytic selective synthesis[J]. Angewandte Chemie International Edition, 2012, 51(44): 10954-10990.
    [92] BENGEL LL, ABERLE B, EGLER-KEMMERER AN, KIENZLE S, HAUER B, HAMMER SC. Engineered enzymes enable selective N-alkylation of pyrazoles with simple haloalkanes[J]. Angewandte Chemie International Edition, 2021, 60(10): 5554-5560.
    [93] ZHOU ZS, QU WL, BAI TY. Compositions and methods for the inhibition of methyltransferases: US20150057243[P]. 2015-02-26.
    [94] QU WL, CATCOTT KC, ZHANG K, LIU SS, GUO JJ, MA JS, PABLO M, GLICK J, XIU Y, KENTON N, MA XY, DUCLOS RI JR, ZHOU ZS. Capturing unknown substrates via in situ formation of tightly bound bisubstrate adducts: S-adenosyl-vinthionine as a functional probe for AdoMet-dependent methyltransferases[J]. Journal of the American Chemical Society, 2016, 138(9): 2877-2880.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王文瑞,董敏. 辅因子S-腺苷-L-甲硫氨酸甲基类似物及其应用[J]. 生物工程学报, 2023, 39(11): 4428-4444

复制
分享
文章指标
  • 点击次数:309
  • 下载次数: 1216
  • HTML阅读次数: 1211
  • 引用次数: 0
历史
  • 收稿日期:2023-04-11
  • 录用日期:2023-05-25
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第6327112位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司