单酰基甘油脂肪酶的共价小分子抑制剂的研究进展
作者:
基金项目:

国家自然科学基金面上项目(31971150); 湖北省杰出青年基金项目(2019CFA069)


Advances in the development of covalent small molecule inhibitors of monoacylglycerol lipase
Author:
  • WANG Junlai

    WANG Junlai

    Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, Hubei, China;Hubei WEL-SAFE Biotechnology Co., Ltd., Ezhou 436006, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Sen

    LIU Sen

    Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, Hubei, China;Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    单酰基甘油脂肪酶(monoacylglycerol lipase, MGL)是一种丝氨酸水解酶,在降解内源性大麻素2-花生四烯酸甘油(2-arachidonoylglycerol, 2-AG)中起主要作用。MGL在部分癌症中的作用已经得到证实,抑制MGL的活性显示出对癌细胞增殖的抑制,这也使MGL成为治疗癌症的一种有前途的新药靶点。目前,MGL的共价抑制剂研发进展较快,此类药物的共价结合能力强,具有高亲合力、持续时间长、剂量低和耐药风险低等特点,因而备受科研人员的关注。本文介绍了MGL的结构功能、共价MGL抑制剂的特点、机制及进展,为新型MGL共价小分子抑制剂的开发提供了参考。

    Abstract:

    Monoacylglycerol lipase (MGL) is a serine hydrolase that plays a major role in the degradation of endogenous cannabinoid 2-arachidonoylglycerol. The role of MGL in some cancer cells has been confirmed, where inhibition of the MGL activity shows inhibition on cell proliferation. This makes MGL a promising drug target for the treatment of cancer. Recently, the development of covalent inhibitors of MGL has developed rapidly. These drugs have strong covalent binding ability, high affinity, long duration, low dose and low risk of drug resistance, so they have received increasing attention. This article introduces the structure and function of MGL, the characteristics, mechanisms and progress of covalent MGL inhibitors, providing reference for the development of novel covalent small molecule inhibitors of MGL.

    参考文献
    [1] BLANKMAN JL, SIMON GM, CRAVATT BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol[J]. Chemistry & Biology, 2007, 14(12): 1347-1356.
    [2] GRABNER GF, ZIMMERMANN R, SCHICHO R, TASCHLER U. Monoglyceride lipase as a drug target: at the crossroads of arachidonic acid metabolism and endocannabinoid signaling[J]. Pharmacology & Therapeutics, 2017, 175: 35-46.
    [3] BERTRAND T, AUGÉ F, HOUTMANN J, RAK A, VALLÉE F, MIKOL V, BERNE PF, MICHOT N, CHEURET D, HOORNAERT C, MATHIEU M. Structural basis for human monoglyceride lipase inhibition[J]. Journal of Molecular Biology, 2010, 396(3): 663-673.
    [4] SCHALK-HIHI C, SCHUBERT C, ALEXANDER R, BAYOUMY S, CLEMENTE JC, DECKMAN I, DESJARLAIS RL, DZORDZORME KC, FLORES CM, GRASBERGER B, KRANZ JK, LEWANDOWSKI F, LIU L, MA HC, MAGUIRE D, MACIELAG MJ, MCDONNELL ME, MEZZASALMA HAARLANDER T, MILLER R, MILLIGAN C, et al. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Å resolution[J]. Protein Science, 2011, 20(4): 670-683.
    [5] LABAR G, BAUVOIS C, BOREL F, FERRER JL, WOUTERS J, LAMBERT DM. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling[J]. ChemBioChem, 2010, 11(2): 218-227.
    [6] GUZMÁN M, SÁNCHEZ C, GALVE-ROPERH I. Control of the cell survival/death decision by cannabinoids[J]. Journal of Molecular Medicine, 2001, 78(11): 613-625.
    [7] QIU CY, YANG L, WANG BT, CUI LH, LI CX, ZHUO YZ, ZHANG LQ, ZHANG SK, ZHANG Q, WANG XM. The role of 2-arachidonoylglycerol in the regulation of the tumor-immune microenvironment in murine models of pancreatic cancer[J]. Biomedicine & Pharmacotherapy, 2019, 115: 108952.
    [8] DINH TP, CARPENTER D, LESLIE FM, FREUND TF, KATONA I, SENSI SL, KATHURIA S, PIOMELLI D. Brain monoglyceride lipase participating in endocannabinoid inactivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10819-10824.
    [9] DENG H, LI WM. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders[J]. Acta Pharmaceutica Sinica B, 2020, 10(4): 582-602.
    [10] KING AR, LODOLA A, CARMI C, FU J, MOR M, PIOMELLI D. A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors[J]. British Journal of Pharmacology, 2009, 157(6): 974-983.
    [11] HOHMANN AG, SUPLITA RL, BOLTON NM, NEELY MH, FEGLEY D, MANGIERI R, KREY JF, MICHAEL WALKER J, HOLMES PV, CRYSTAL JD, DURANTI A, TONTINI A, MOR M, TARZIA G, PIOMELLI D. An endocannabinoid mechanism for stress-induced analgesia[J]. Nature, 2005, 435(7045): 1108-1112.
    [12] WYATT RM, FRASER I, WELTY N, LORD B, WENNERHOLM M, SUTTON S, AMERIKS MK, DUGOVIC C, YUN SJ, WHITE A, NGUYEN L, KOUDRIAKOVA T, TIAN GC, SUAREZ J, SZEWCZUK L, BONNETTE W, AHN K, GHOSH B, FLORES CM, CONNOLLY PJ, et al. Pharmacologic characterization of JNJ-42226314, [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl] methanone, a reversible, selective, and potent monoacylglycerol lipase inhibitor[J]. Journal of Pharmacology and Experimental Therapeutics, 2020, 372(3): 339-353.
    [13] VISWESWARAN M, ARFUSO F, WARRIER S, DHARMARAJAN A. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells[J]. Stem Cells, 2020, 38(1): 6-14.
    [14] YE L, ZHANG B, SEVIOUR EG, TAO KX, LIU XH, LING Y, CHEN JY, WANG GB. Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer[J]. Cancer Letters, 2011, 307(1): 6-17.
    [15] NOMURA DK, LONG JZ, NIESSEN S, HOOVER HS, NG SW, CRAVATT BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis[J]. Cell, 2010, 140(1): 49-61.
    [16] ZHANG JY, LIU ZJ, LIAN ZR, LIAO R, CHEN Y, QIN Y, WANG JL, JIANG Q, WANG XB, GONG JP. Monoacylglycerol lipase: a novel potential therapeutic target and prognostic indicator for hepatocellular carcinoma[J]. Scientific Reports, 2016, 6: 35784.
    [17] SCHWARZ R, RAMER R, HINZ B. Targeting the endocannabinoid system as a potential anticancer approach[J]. Drug Metabolism Reviews, 2018, 50(1): 26-53.
    [18] ZHANG H, GUO W, ZHANG F, LI RD, ZHOU Y, SHAO F, FENG XL, TAN FW, WANG J, GAO SG, GAO YB, HE J. Monoacylglycerol lipase knockdown inhibits cell proliferation and metastasis in lung adenocarcinoma[J]. Frontiers in Oncology, 2020, 10: 559568.
    [19] GONG XK, ZHENG X, HUANG Y, SONG WH, CHEN G, CHEN T. Monoacylglycerol lipase (MAGL) inhibition impedes the osteosarcoma progression by regulating epithelial mesenchymal transition[J]. The Tohoku Journal of Experimental Medicine, 2022, 256(1): 19-26.
    [20] GRANCHI C, CALIGIURI I, MINUTOLO F, RIZZOLIO F, TUCCINARDI T. A patent review of monoacylglycerol lipase (MAGL) inhibitors (2013-2017)[J]. Expert Opinion on Therapeutic Patents, 2017, 27(12): 1341-1351.
    [21] BUTLER CR, BECK EM, HARRIS A, HUANG Z, MCALLISTER LA, AM ENDE CW, FENNELL K, FOLEY TL, FONSECA K, HAWRYLIK SJ, JOHNSON DS, KNAFELS JD, MENTE S, STEPHEN NOELL G, PANDIT J, PHILLIPS TB, PIRO JR, ROGERS BN, SAMAD TA, WANG J, et al. Azetidine and piperidine carbamates as efficient, covalent inhibitors of monoacylglycerol lipase[J]. Journal of Medicinal Chemistry, 2017, 60(23): 9860-9873.
    [22] MCALLISTER LA, BUTLER CR, MENTE S, O'NEIL SV, FONSECA KR, PIRO JR, CIANFROGNA JA, FOLEY TL, GILBERT AM, HARRIS AR, HELAL CJ, JOHNSON DS, MONTGOMERY JI, NASON DM, NOELL S, PANDIT J, ROGERS BN, SAMAD TA, SHAFFER CL, DA SILVA RG, et al. Discovery of trifluoromethyl glycol carbamates as potent and selective covalent monoacylglycerol lipase (MAGL) inhibitors for treatment of neuroinflammation[J]. Journal of Medicinal Chemistry, 2018, 61(7): 3008-3026.
    [23] GALVANI F, SCALVINI L, RIVARA S, LODOLA A, MOR M. Mechanistic modeling of monoglyceride lipase covalent modification elucidates the role of leaving group expulsion and discriminates inhibitors with high and low potency[J]. Journal of Chemical Information and Modeling, 2022, 62(11): 2771-2787.
    [24] LABAR G, WOUTERS J, LAMBERT DM. A review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling[J]. Current Medicinal Chemistry, 2010, 17(24): 2588-2607.
    [25] de CESCO S, KURIAN J, DUFRESNE C, MITTERMAIER AK, MOITESSIER N. Covalent inhibitors design and discovery[J]. European Journal of Medicinal Chemistry, 2017, 138: 96-114.
    [26] RAY S, MURKIN AS. New electrophiles and strategies for mechanism-based and targeted covalent inhibitor design[J]. Biochemistry, 2019, 58(52): 5234-5244.
    [27] BAUER RA. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies[J]. Drug Discovery Today, 2015, 20(9): 1061-1073.
    [28] BOIKE L, HENNING NJ, NOMURA DK. Advances in covalent drug discovery[J]. Nature Reviews Drug Discovery, 2022, 21(12): 881-898.
    [29] KALGUTKAR AS, DALVIE DK. Drug discovery for a new generation of covalent drugs[J]. Expert Opinion on Drug Discovery, 2012, 7(7): 561-581.
    [30] PETTINGER J, JONES K, CHEESEMAN MD. Lysine-targeting covalent inhibitors[J]. Angewandte Chemie International Edition, 2017, 56(48): 15200-15209.
    [31] CHAN WC, SHARIFZADEH S, BUHRLAGE SJ, MARTO JA. Chemoproteomic methods for covalent drug discovery[J]. Chemical Society Reviews, 2021, 50(15): 8361-8381.
    [32] LONSDALE R, WARD RA. Structure-based design of targeted covalent inhibitors[J]. Chemical Society Reviews, 2018, 47(11): 3816-3830.
    [33] BAILLIE TA. Targeted covalent inhibitors for drug design[J]. Angewandte Chemie International Edition, 2016, 55(43): 13408-13421.
    [34] STRELOW JM. A perspective on the kinetics of covalent and irreversible inhibition[J]. SLAS Discovery, 2017, 22(1): 3-20.
    [35] JÖST C, NITSCHE C, SCHOLZ T, ROUX L, KLEIN CD. Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments[J]. Journal of Medicinal Chemistry, 2014, 57(18): 7590-7599.
    [36] LIPINSKI C, HOPKINS A. Navigating chemical space for biology and medicine[J]. Nature, 2004, 432(7019): 855-861.
    [37] WOUTERS OJ, MCKEE M, LUYTEN J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018[J]. JAMA, 2020, 323(9): 844.
    [38] ROBERTSON JG. Mechanistic basis of enzyme-targeted drugs[J]. Biochemistry, 2005, 44(15): 5561-5571.
    [39] GOPARAJU S, UEDA N, TANIGUCHI K, YAMAMOTO S. Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors[J]. Biochemical Pharmacology, 1999, 57(4): 417-423.
    [40] SAARIO SM, SALO OMH, NEVALAINEN T, POSO A, LAITINEN JT, JÄRVINEN T, NIEMI RK. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes[J]. Chemistry & Biology, 2005, 12(6): 649-656.
    [41] LABAR G, BAUVOIS C, MUCCIOLI GG, WOUTERS J, LAMBERT DM. Disulfiram is an inhibitor of human purified monoacylglycerol lipase, the enzyme regulating 2-arachidonoylglycerol signaling[J]. ChemBioChem, 2007, 8(11): 1293-1297.
    [42] ZVONOK N, PANDARINATHAN L, WILLIAMS J, JOHNSTON M, KARAGEORGOS I, JANERO DR, KRISHNAN SC, MAKRIYANNIS A. Covalent inhibitors of human monoacylglycerol lipase: ligand-assisted characterization of the catalytic site by mass spectrometry and mutational analysis[J]. Chemistry & Biology, 2008, 15(8): 854-862.
    [43] MUCCIOLI GG, LABAR G, LAMBERT DM. CAY10499, a novel monoglyceride lipase inhibitor evidenced by an expeditious MGL assay[J]. ChemBioChem, 2008, 9(16): 2704-2710.
    [44] HOLTFRERICH A, MAKHARADZE T, LEHR M. High-performance liquid chromatography assay with fluorescence detection for the evaluation of inhibitors against human recombinant monoacylglycerol lipase[J]. Analytical Biochemistry, 2010, 399(2): 218-224.
    [45] GRANCHI C, RIZZOLIO F, BORDONI V, CALIGIURI I, MANERA C, MACCHIA M, MINUTOLO F, MARTINELLI A, GIORDANO A, TUCCINARDI T. 4-aryliden-2-methyloxazol-5(4H)-one as a new scaffold for selective reversible MAGL inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(1): 137-146.
    [46] TUCCINARDI T, GRANCHI C, RIZZOLIO F, CALIGIURI I, BATTISTELLO V, TOFFOLI G, MINUTOLO F, MACCHIA M, MARTINELLI A. Identification and characterization of a new reversible MAGL inhibitor[J]. Bioorganic & Medicinal Chemistry, 2014, 22(13): 3285-3291.
    [47] LONG JZ, MOMURA DK, CRAVATT BF. Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism[J]. Chemistry & Biology, 2009, 16(7): 744-753.
    [48] LONG JZ, LI WW, BOOKER L, BURSTON JJ, KINSEY SG, SCHLOSBURG JE, PAVÓN FJ, SERRANO AM, SELLEY DE, PARSONS LH, LICHTMAN AH, CRAVATT BF. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects[J]. Nature Chemical Biology, 2009, 5(1): 37-44.
    [49] BJÖRKLUND E, NORÉN E, NILSSON J, FOWLER CJ. Inhibition of monoacylglycerol lipase by troglitazone, N-arachidonoyl dopamine and the irreversible inhibitor JZL184: comparison of two different assays[J]. British Journal of Pharmacology, 2010, 161(7): 1512-1526.
    [50] FERNÁNDEZ-SUÁREZ D, CELORRIO M, RIEZU-BOJ JI, UGARTE A, PACHECO R, GONZÁLEZ H, OYARZABAL J, HILLARD CJ, FRANCO R, AYMERICH MS. The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model[J]. Neurobiology of Aging, 2014, 35(11): 2603-2616.
    [51] BERNAL-CHICO A, CANEDO M, MANTEROLA A, VICTORIA SÁNCHEZ-GÓMEZ M, PÉREZ-SAMARTÍN A, RODRÍGUEZ-PUERTAS R, MATUTE C, MATO S. Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo[J]. Glia, 2015, 63(1): 163-176.
    [52] SEILLIER A, DOMINGUEZ AGUILAR D, GIUFFRIDA A. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184[J]. Pharmacology Biochemistry and Behavior, 2014, 124: 153-159.
    [53] MARINO S, de RIDDER D, BISHOP RT, RENEMA N, PONZETTI M, SOPHOCLEOUS A, CAPULLI M, ALJEFFERY A, CARRASCO G, DALGHI GENS M, KHOGEER A, RALSTON SH, GERTSCH J, LAMOUREUX F, HEYMANN D, RUCCI N, IDRIS AI. Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodelling in healthy and cancer-bearing mice[J]. EBioMedicine, 2019, 44: 452-466.
    [54] KORHONEN J, KUUSISTO A, van BRUCHEM J, PATEL JZ, LAITINEN T, NAVIA-PALDANIUS D, LAITINEN JT, SAVINAINEN JR, PARKKARI T, NEVALAINEN TJ. Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)[J]. Bioorganic & Medicinal Chemistry, 2014, 22(23): 6694-6705.
    [55] AALTONEN N, SAVINAINEN JR, RIBAS CR, RÖNKKÖ J, KUUSISTO A, KORHONEN J, NAVIA-PALDANIUS D, HÄYRINEN J, TAKABE P, KÄSNÄNEN H, PANTSAR T, LAITINEN T, LEHTONEN M, PASONEN-SEPPÄNEN S, POSO A, NEVALAINEN T, LAITINEN JT. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase[J]. Chemistry & Biology, 2013, 20(3): 379-390.
    [56] NIPHAKIS MJ, COGNETTA AB Ⅲ, CHANG JW, BUCZYNSKI MW, PARSONS LH, BYRNE F, BURSTON JJ, CHAPMAN V, CRAVATT BF. Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors[J]. ACS Chemical Neuroscience, 2013, 4(9): 1322-1332.
    [57] CHANG JW, NIPHAKIS MJ, LUM KM, COGNETTA ABⅢ, WANG C, MATTHEWS ML, NIESSEN S, BUCZYNSKI MW, PARSONS LH, CRAVATT BF. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates[J]. Chemistry & Biology, 2012, 19(5): 579-588.
    [58] IGNATOWSKA-JANKOWSKA BM, GHOSH S, CROWE MS, KINSEY SG, NIPHAKIS MJ, ABDULLAH RA, TAO Q, O' NEAL ST, WALENTINY DM, WILEY JL, CRAVATT BF, LICHTMAN AH. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects[J]. British Journal of Pharmacology, 2014, 171(6): 1392-1407.
    [59] GRIEBEL G, PICHAT P, BEESKÉ S, LEROY T, REDON N, JACQUET A, FRANÇON D, BERT L, EVEN L, LOPEZ-GRANCHA M, TOLSTYKH T, SUN FX, YU QY, BRITTAIN S, ARLT H, HE T, ZHANG BL, WIEDERSCHAIN D, BERTRAND T, HOUTMANN J, et al. Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning and memory performance while producing antinociceptive activity in rodents[J]. Scientific Reports, 2015, 5: 7642.
    [60] WANG L, MORI W, CHENG R, YUI J, HATORI A, MA L, ZHANG Y, ROTSTEIN BH, FUJINAGA M, SHIMODA Y, YAMASAKI T, XIE L, NAGAI Y, MINAMIMOTO T, HIGUCHI M, VASDEV N, ZHANG MR, LIANG SH. Synthesis and preclinical evaluation of sulfonamido-based [(11)C-carbonyl]-carbamates and ureas for imaging monoacylglycerol lipase[J]. Theranostics, 2016, 6(8): 1145-1159.
    [61] CISAR JS, WEBER OD, CLAPPER JR, BLANKMAN JL, HENRY CL, SIMON GM, ALEXANDER JP, JONES TK, ALAN B EZEKOWITZ R, O'NEILL GP, GRICE CA. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders[J]. Journal of Medicinal Chemistry, 2018, 61(20): 9062-9084.
    [62] CLAPPER JR, HENRY CL, NIPHAKIS MJ, KNIZE AM, COPPOLA AR, SIMON GM, NGO N, HERBST RA, HERBST DM, REED AW, CISAR JS, WEBER OD, VIADER A, ALEXANDER JP, CUNNINGHAM ML, JONES TK, FRASER IP, GRICE CA, ALAN B EZEKOWITZ R, O'NEILL GP, et al. Monoacylglycerol lipase inhibition in human and rodent systems supports clinical evaluation of endocannabinoid modulators[J]. Journal of Pharmacology and Experimental Therapeutics, 2018, 367(3): 494-508.
    [63] MA XH, XIA M, WEI LN, GUO K, SUN R, LIU Y, QIU CP, JIANG J. ABX-1431 inhibits the development of endometrial adenocarcinoma and reverses progesterone resistance by targeting MGLL[J]. Cell Death & Disease, 2022, 13(12): 1067.
    [64] JIANG M, van der STELT M. Activity-based protein profiling delivers selective drug candidate ABX-1431, a monoacylglycerol lipase inhibitor, to control lipid metabolism in neurological disorders[J]. Journal of Medicinal Chemistry, 2018, 61(20): 9059-9061.
    [65] LI BB, RONG DQ, WANG YX. Targeting protein-protein interaction with covalent small-molecule inhibitors[J]. Current Topics in Medicinal Chemistry, 2019, 19(21): 1872-1876.
    [66] LI QZ, WANG ZY, ZHENG Q, LIU S. Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2[J]. Computational and Structural Biotechnology Journal, 2020, 18: 2200-2208.
    [67] SONG Q, WANG ZY, LIU S. Discovery of Covalent Drugs Targeting the Key Enzymes of SARS-CoV-2 using SCARdock[M]//Methods in Pharmacology and Toxicology. New York, NY: Springer US, 2021: 291-306.
    [68] ZHANG Y, ZHENG Q, ZHOU Y, LIU S. Repurposing clinical drugs as AdoMetDC inhibitors using the SCAR strategy[J]. Frontiers in Pharmacology, 2020, 11: 248.
    [69] AI YB, YU LL, TAN X, CHAI XY, LIU S. Discovery of covalent ligands via noncovalent docking by dissecting covalent docking based on a "steric-clashes alleviating receptor (SCAR)" strategy[J]. Journal of Chemical Information and Modeling, 2016, 56(8): 1563-1575.
    [70] LIU S, ZHENG Q, WANG ZY. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus[J]. Bioinformatics, 2020, 36(11): 3295-3298.
    [71] SONG Q, ZENG LY, ZHENG Q, LIU S. SCARdock: a web server and manually curated resource for discovering covalent ligands[J]. ACS Omega, 2023, 8(11): 10397-10402.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪君来,刘森. 单酰基甘油脂肪酶的共价小分子抑制剂的研究进展[J]. 生物工程学报, 2023, 39(11): 4397-4412

复制
相关视频

分享
文章指标
  • 点击次数:310
  • 下载次数: 3198
  • HTML阅读次数: 902
  • 引用次数: 0
历史
  • 收稿日期:2023-02-27
  • 录用日期:2023-05-08
  • 在线发布日期: 2023-11-16
  • 出版日期: 2023-11-25
文章二维码
您是第6364977位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司