视黄素蛋白的表达优化及其与蜡乳液在纳米涂层中的应用
作者:
基金项目:

国家重点研发计划(2021YFC2100102-03);国家自然科学基金(32001064)


Optimization of retinin expression and the application with wax emulsion in nanocoatings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    仿果蝇眼睛的抗反射纳米涂层是一种具有巨大市场潜力的生物可降解材料,可用于制造各种需要抗反射性能的光学设备。相较于物理化学法,采用微生物表达视黄素蛋白为在温和条件下制备纳米涂层提供了新思路。然而,目前抗反射涂层的关键——视黄素蛋白的表达水平较低,难以满足大规模生产。本研究通过分析筛选果蝇来源视黄素蛋白的最佳表达宿主,优化视黄素蛋白的表达水平,确定了中国仓鼠卵巢细胞(Chinese hamster ovary,CHO)是视黄素蛋白的高效表达宿主,获得纯化的视黄素蛋白。同时,探索羊毛脂纳米乳液的制备方法,确定了特定浓度视黄素蛋白及与蜡乳液的比例为16:4,纳米涂层形成体系pH为7.0,温度为30℃时,纳米涂层的抗反射能力最佳。本研究为人工绿色可降解抗反射涂层的未来应用奠定基础,提供了蛋白表达优化思路,并通过纳米涂层的成分确定及体系成分浓度、pH及温度的优化,增强了人工抗反射纳米涂层的抗反射能力并降低了生产成本。

    Abstract:

    Anti-reflective nanocoatings that mimic the eyes of fruit flies are biodegradable materials with great market potential for a variety of optical devices that require anti-reflective properties. Microbial expression of retinin provides a new idea for the preparation of nanocoatings under mild conditions compared to physicochemical methods. However, the current expression level of retinin, the key to anti-reflective coating, is low and difficult to meet mass production. In this study, we analyzed and screened the best expression hosts for Drosophila-derived retinin protein, and optimized its expression. Chinese hamster ovary (CHO) cells were identified as the efficient expression host of retinin, and purified retinin protein was obtained. At the same time, the preparation method of lanolin nanoemulsion was explored, and the best anti-reflective ability of the nano-coating was determined when the ratio of specific concentration of retinin protein and wax emulsion was 16:4, the pH of the nano-coating formation system was 7.0, and the temperature was 30℃. The enhanced antireflective ability and reduced production cost of artificial antireflective nanocoatings by determining the composition of nanocoatings and optimizing the concentration, pH and temperature of system components may facilitate future application of artificial green degradable antireflective coatings.

    参考文献
    [1] BAO WW, DENG ZF, ZHANG SD, JI ZT, ZHANG HC. Next-generation composite coating system:nanocoating[J]. Frontiers in Materials, 2019, 6:72.
    [2] HAN ZW, MU ZZ, LI B, NIU SC, ZHANG JQ, REN LQ. A high-transmission, multiple antireflective surface inspired from bilayer 3D ultrafine hierarchical structures in butterfly wing scales[J]. Small, 2016, 12(6):713-720.
    [3] GORBSN, GORB EV. Functional Surfaces in Biology Ⅲ Diversity of the Physical Phenomena[M]. Switzerland:Springer, 2018, 29-53.
    [4] TADEPALLI S, SLOCIK JM, GUPTA MK, NAIK RR, SINGAMANENI S. Bio-optics and bio-inspired optical materials[J]. Chemical Reviews, 2017, 117(20):12705-12763.
    [5] KRYUCHKOV M, BILOUSOV O, LEHMANN J, FIEBIG M, KATANAEV VL. Reverse and forward engineering of Drosophila corneal nanocoatings[J]. Nature, 2020, 585(7825):383-389.
    [6] SARKIN AS, EKREN N, SAGLAM S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels[J]. Solar Energy, 2020, 199:63-73.
    [7] ZHAI JJ, WANG Q, TAO L. Connexin expression patterns in diseased human corneas[J]. Experimental and Therapeutic Medicine, 2014, 7(4):791-798.
    [8] PIATIGORSKY J. Enigma of the abundant water-soluble cytoplasmic proteins of the cornea:the refracton hypothesis[J]. Cornea, 2001, 20(8):853-858.
    [9] KIM E, CHOI Y, LEE S, SEO Y, YOON J, BAEK K. Characterization of the Drosophila melanogaster retinin gene encoding a cornea-specific protein[J]. Insect Molecular Biology, 2008, 17(5):537-543.
    [10] CAMPOS A, CLARO PC, LUCHESI BR, MIRANDA M, SOUZA FVD, DAVID FERREIRA M, MARCONCINI JM. Curaua cellulose sheets dip coated with micro and nano carnauba wax emulsions[J].Cellulose, 2019, 26(13/14):7983-7993.
    [11] RODRIGUES DC, ALBERTO CACERES C, RIBEIRO HL, de ABREU RFA, CUNHA AP, AZEREDO HMC. Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films[J]. Food Hydrocolloids, 2014, 38:147-151.
    [12] UZUN M, OYMAK H. Polylactic acid and lanolin based nanofibrous structures for wound management application[J]. Indian Journal of Fibre & Textile Research, 2022, 47:105-115.
    [13] de OLIVEIRA FILHO JG, de OLIVEIRA NOBRE BEZERRA CC, ALBIERO BR, ALENCAR OLDONI FC, MIRANDA M, EGEA MB, de AZEREDO HMC, DAVID FERREIRA M. New approach in the development of edible films:the use of carnauba wax micro-or nanoemulsions in arrowroot starch-based films[J]. Food Packaging and Shelf Life, 2020, 26:100589.
    [14] OJIMA-KATO T, NAGAI S, NAKANO H. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2017, 123(5):540-546.
    [15] EFIMOVA VS, ISAEVA LV, MAKEEVA DS, RUBTSOV MA, NOVIKOVA LA. Expression of cholesterol hydroxylase/lyase system proteins in yeast S. cerevisiae cells as a self-processing polyprotein[J]. Molecular Biotechnology, 2017, 59(9):394-406.
    [16] YANG ZL, ZHANG ZS. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris:a review[J]. Biotechnology Advances, 2018, 36(1):182-195.
    [17] PUXBAUM V, MATTANOVICH D, GASSER B. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris[J]. Applied Microbiology and Biotechnology, 2015, 99(7):2925-2938.
    [18] ROSANO GL, CECCARELLI EA. Recombinant protein expression in Escherichia coli:advances and challenges[J]. Frontiers in Microbiology, 2014, 5:172.
    [19] PAN CY, JIA WC, LU BS, BISHOP CE. Expression of TAT recombinant Oct4, Sox2, Lin28, and Nanog proteins from baculovirus-infected Sf9 insect cells[J]. Gene, 2015, 556(2):245-248.
    [20] FISCHER S, HANDRICK R, OTTE K. The art of CHO cell engineering:a comprehensive retrospect and future perspectives[J]. Biotechnology Advances, 2015, 33(8):1878-1896.
    [21] FACHIN L, VIOTTO WH. Effect of pH and heat treatment of cheese whey on solubility and emulsifying properties of whey protein concentrate produced by ultrafiltration[J]. International Dairy Journal, 2005, 15(4):325-332.
    [22] SUN Q, FU YF, WANG WQ. Temperature effects on hydrophobic interactions:implications for protein unfolding[J]. Chemical Physics, 2022, 559:111550.
    [23] MAHMOUDI M, SHOKRGOZAR MA, BEHZADI S. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles[J]. Nanoscale, 2013, 5(8):3240-3244.
    [24] CEREGHINO JL, CREGG JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1):45-66.
    [25] LE LTM, NYENGAARD JR, GOLAS MM, SANDER B. Vectors for expression of signal peptide-dependent proteins in baculovirus/insect cell systems and their application to expression and purification of the high-affinity immunoglobulin gamma fc receptor I in complex with its gamma chain[J]. Molecular Biotechnology, 2018, 60(1):31-40.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘宇晴,夏媛媛,沈微,杨海泉,陈献忠. 视黄素蛋白的表达优化及其与蜡乳液在纳米涂层中的应用[J]. 生物工程学报, 2023, 39(10): 4258-4274

复制
分享
文章指标
  • 点击次数:197
  • 下载次数: 785
  • HTML阅读次数: 574
  • 引用次数: 0
历史
  • 收稿日期:2023-02-19
  • 录用日期:2023-05-23
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第5993197位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司