抑制CD36与Nogo-B表达抑制三阴性乳腺癌细胞增殖与迁移
作者:
基金项目:

国家自然科学基金(U22A20272)


Inhibition of CD36 and Nogo-B expression inhibited the proliferation and migration of triple negative breast cancer cells
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分化聚类36(cluster of differentiation 36,CD36)是一种位于细胞表面的膜蛋白受体,可以结合并转运脂肪酸。内质网膜蛋白4B (Nogo-B)在肝脏中调控脂肪酸代谢而影响肝癌的发展。目前并不清楚CD36和Nogo-B的相互作用是否能够影响乳腺癌细胞的增殖和迁移。本研究在三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞中同时干预CD36与Nogo-B的表达来探索它们对细胞增殖与迁移的影响。结果表明在三阴性乳腺癌细胞中,单独抑制CD36或Nogo-B的表达都能够抑制细胞的增殖与迁移;同时抑制CD36与Nogo-B的表达时,这种抑制效果更加明显,且Vimentin、B细胞淋巴瘤-2(B-cell lympoma-2,BCL2)和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达受到抑制。在小鼠移植瘤模型中,E0771细胞转染CD36或Nogo-B的siRNA后成瘤能力降低;同时敲减CD36和Nogo-B时,肿瘤生长速度显著减慢。机制研究发现,抑制CD36和Nogo-B表达能够抑制脂肪酸结合蛋白4(fatty acid binding protein 4,FABP4)和脂肪酸转运蛋白4(fatty acid transport protein 4,FATP4) mRNA的含量,同时CD36和Nogo-B过表达刺激的细胞增殖被FABP4的siRNA降低,预示着抑制乳腺癌细胞中CD36与Nogo-B的表达可能通过抑制脂肪酸的吸收和转运而抑制细胞的生长和迁移。此外,抑制CD36与Nogo-B的表达可激活P53-P21-Rb信号通路,参与抑制CD36与Nogo-B表达而抑制的细胞增殖与迁移。本研究证明同时抑制CD36和Nogo-B的表达能够协同抑制三阴性乳腺癌细胞的增殖和迁移,为临床抗三阴性乳腺癌药物的开发提供了新的靶点。

    Abstract:

    Cluster of differentiation 36 (CD36) is a membrane glycoprotein receptor capable of binding and transporting fatty acid. Nogo-B regulates the metabolism of fatty acids in the liver and affects the development of liver cancer. To date, it remains unclear whether the interaction between CD36 and Nogo-B affects the proliferation and migration of breast cancer cells. In the current study, we aimed to determine whether the interference of CD36 and Nogo-B affects the proliferation and migration of triple-negative breast cancer (TNBC) cells. The results showed that inhibition of CD36 or Nogo-B alone can inhibit the proliferation and migration of TNBC cells, and the inhibitory effect was more pronounced when CD36 and Nogo-B were inhibited simultaneously. Meanwhile, it was found that inhibition of CD36 and Nogo-B expression can inhibit the expression of Vimentin, B-cell lympoma-2 (BCL2) and proliferating cell nuclear antigen (PCNA). In vivo, knockdown of CD36 or Nogo-B in E0771 cells reduced its tumorigenic ability, which was further enhanced by knockdown of CD36 and Nogo-B simultaneously. Mechanistically, inhibition of CD36 and Nogo-B expression can decrease fatty acid binding protein 4 (FABP4) and fatty acid transport protein 4 (FATP4) expression. Moreover, overexpression of CD36 and Nogo-B-induced cell proliferation was attenuated by FABP4 siRNA, indicating that inhibition of CD36 and Nogo-B expression could inhibit the absorption and transport of fatty acids, thereby inhibiting the proliferation and migration of TNBC. Furthermore, inhibition of CD36 and Nogo-B expression activated the P53-P21-Rb signaling pathway which contributed to the CD36 and Nogo-B-inhibited proliferation and migration of TNBC. Taken together, the results suggest that inhibition of CD36 and Nogo-B can reduce the proliferation and migration of TNBC, which provides new targets for the development of drugs against TNBC.

    参考文献
    [1] SUNG H, FERLAY J, SIEGEL RL, LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a Cancer Journal for Clinicians, 2021, 71(3):209-249.
    [2] ZAOUI M, MOREL M, FERRAND N, FELLAHI S, BASTARD JP, LAMAZIÈRE A, LARSEN AK, BÉRÉZIAT V, ATLAN M, SABBAH M. Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density[J]. Cancers, 2019, 11(12):2012.
    [3] GLATZ JFC, LUIKEN JJFP. From fat to FAT (CD36/SR-B2):understanding the regulation of cellular fatty acid uptake[J]. Biochimie, 2017, 136:21-26.
    [4] 梁宇. CD36促进ER阳性乳腺癌细胞增殖与迁移的作用与机制研究[D]. 合肥:合肥工业大学硕士学位论文, 2019. LIANG Y. The function and mechanism of CD36-indcued ER positive breast cancer cells proliferation and migration[D]. Hefei:Master's Thesis of Hefei University of Technology, 2019(in Chinese).
    [5] 毛青, 李强. Nogo-B结构及功能[J]. 国际内科学杂志, 2007, 34(9):521-524. MAO Q, LI Q. The structure and function of Nogo-B[J]. International Journal of Internal Medicine, 2007, 34(9):521-524(in Chinese).
    [6] ZHU B, CHEN SB, HU XD, JIN XF, LE YC, CAO LH, YUAN ZH, LIN Z, JIANG SM, SUN LC, YU L. Knockout of the nogo-B gene attenuates tumor growth and metastasis in Hepatocellular carcinoma[J]. Neoplasia (New York, N Y), 2017, 19(7):583-593.
    [7] CAI H, SAIYIN H, LIU X, HAN DD, JI GQ, QIN B, ZUO J, SHEN SQ, YU WB, WU JX, WU YH, YU L. Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma[J]. Molecular Oncology, 2018, 12(12):2042-2054.
    [8] ZHANG S, GUO FL, YU M, YANG XX, YAO Z, LI Q, WEI Z, FENG K, ZENG P, ZHAO D, LI XJ, ZHU Y, MIAO QR, IWAKIRI Y, CHEN YL, HAN JH, DUAN YJ. Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity[J]. Journal of Hepatology, 2020, 73(6):1482-1495.
    [9] TIAN Y, YANG B, QIU WN, HAO YJ, ZHANG ZX, YANG B, LI N, CHENG SQ, LIN ZJ, RUI YC, CHEUNG OKW, YANG WQ, WU WKK, CHEUNG YS, LAI PBS, LUO JJ, SUNG JJY, CHEN RS, WANG HY, CHENG ASL, et al. ER-residential Nogo-B accelerates NAFLD-associated HCC mediated by metabolic reprogramming of oxLDL lipophagy[J]. Nature Communications, 2019, 10:3391.
    [10] LI HJ, HAN XG, YANG SB, WANG YJ, DONG Y, TANG TT. FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53[J]. Oncogene, 2021, 40(15):2785-2802.
    [11] ENGELAND K. Cell cycle regulation:p53-p21-RB signaling[J]. Cell Death and Differentiation, 2022, 29(5):946-960.
    [12] 潘昭吉. 胃癌间质干细胞中YAP信号在胃癌发展过程中的作用[D]. 镇江:江苏大学硕士学位论文, 2017. PAN ZJ. The role of YAP signaling in gastric cancer derived mesenchymal stem cells in cancer progression[D]. Zhenjiang:Master's Thesis of Jiangsu University, 2017(in Chinese).
    [13] 朱军, 唐矛. 脂肪酸转运蛋白4在肾透明细胞癌中的表达及临床意义[J]. 内蒙古医科大学学报, 2021, 43(4):425-427, 441. ZHU J, TANG M. Expression and clinical significance of fatty acid transporter 4 in renal clear cell carcinoma[J]. Journal of Inner Mongolia Medical University, 2021, 43(4):425-427, 441(in Chinese).
    [14] PATTANAYAK B, LAMEIRINHAS A, TORRES-RUIZ S, BURGUÉS O, ROVIRA A, TERESA MARTÍNEZ M, TAPIA M, ZAZO S, ALBANELL J, ROJO F, BERMEJO B, EROLES P. Role of SALL4 in HER2+ breast cancer progression:regulating PI3K/AKT pathway[J]. International Journal of Molecular Sciences, 2022, 23(21):13292.
    [15] 杨结. CCNA2基因在肝细胞癌中的表达、信号通路和预后关系生物信息分析及验证[D]. 天津:天津医科大学硕士学位论文. YANG J. Expression of CCNA2 gene in hepatocellular carcinoma, biological information analysis and verification of the relationship between signal pathway and prognosis[D]. Tianjin:Master's Thesis of Tianjin Medical University (in Chinese).
    [16] SUN LC, ZHANG HF, GAO P. Metabolic reprogramming and epigenetic modifications on the path to cancer[J]. Protein & Cell, 2022, 13(12):877-919.
    [17] CHEN RQ, CHEN LG. Solute carrier transporters:emerging central players in tumour immunotherapy[J]. Trends in Cell Biology, 2022, 32(3):186-201.
    [18] HAO JW, WANG J, GUO HL, ZHAO YY, SUN HH, LI YF, LAI XY, ZHAO N, WANG X, XIE CC, HONG LX, HUANG X, WANG HR, LI CB, LIANG B, CHEN S, ZHAO TJ. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis[J]. Nature Communications, 2020, 11:4765.
    [19] MA XZ, XIAO LL, LIU LT, YE LQ, SU P, BI EG, WANG Q, YANG MJ, QIAN JF, YI Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability[J]. Cell Metabolism, 2021, 33(5):1001-1012.e5.
    [20] HOY ANDREW J, NAGARAJAN SHILPA R, BUTLER LISA M. Tumour fatty acid metabolism in the context of therapy resistance and obesity[J]. Nature Reviews Cancer, 2021, 21(12):753-766.
    [21] WANG JY, ZHONG Q, ZHANG H, LIU SX, LI SB, XIA TL, XIAO ZW, CHEN RH, YE YC, LIANG FY, HAN P, HUANG XM. Nogo-B promotes invasion and metastasis of nasopharyngeal carcinoma via RhoA-SRF-MRTFA pathway[J]. Cell Death & Disease, 2022, 13:76.
    [22] 黄威, 程忠平. 脂肪酸代谢与肿瘤的发生、发展和转移的关系[J]. 肿瘤研究与临床, 2018, 30(12):879-882. HUANG W, CHENG ZP. Fatty acid metabolism and tumor occurrence, development and metastasis[J]. Cancer Research and Clinic, 2018, 30(12):879-882(in Chinese).
    [23] 张雨, 刘芳. FABP4在肿瘤发生发展的初步研究进展[J]. 中国生育健康杂志, 2020, 31(6):577-579. ZHANG Y, LIU F. Preliminary research progress of FABP4 in tumor occurrence and development[J]. Chinese Journal of Reproductive Health, 2020, 31(6):577-579(in Chinese).
    [24] ZENG J, SAUTER ER, LI B.. FABP4:a new player in obesity-associated breast cancer[J]. Trends in Molecular Medicine, 2020, 26(5):437-440.
    [25] KRAMMER J, DIGEL M, EHEHALT F, STREMMEL W, FÜLLEKRUG J, EHEHALT R. Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells[J]. International Journal of Medical Sciences, 2011, 8(7):599-614.
    [26] KIM YS, JUNG J, JEONG H, LEE JH, OH HE, LEE ES, CHOI JW. High membranous expression of fatty acid transport protein 4 is associated with tumorigenesis and tumor progression in clear cell renal cell carcinoma[J]. Disease Markers, 2019, 2019:1-7.
    [27] CABRÉ A, LÁZARO I, GIRONA J, MANZANARES JM, MARIMÓN F, PLANA N, HERAS M, MASANA L. Plasma fatty acid-binding protein 4 increases with renal dysfunction in type 2 diabetic patients without microalbuminuria[J]. Clinical Chemistry, 2008, 54(1):181-187.
    [28] PUZIO-KUTER AM. The role of p53 in metabolic regulation[J]. Genes & Cancer, 2011, 2(4):385-391.
    [29] HALLENBORG P, FEDDERSEN S, MADSEN L, KRISTIANSEN K. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function[J]. Expert Opinion on Therapeutic Targets, 2009, 13(2):235-246.
    [30] WANG XW, ZHAO XC, GAO X, MEI YD, WU M. A new role of p53 in regulating lipid metabolism[J]. Journal of Molecular Cell Biology, 2013, 5(2):147-150.
    [31] SIMONE V, D'AVENIA M, ARGENTIERO A, FELICI C, RIZZO FM, de PERGOLA G, SILVESTRIS F. Obesity and breast cancer:molecular interconnections and potential clinical applications[J]. The Oncologist, 2016, 21(4):404-417.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪承义,韩际宏,陈元利. 抑制CD36与Nogo-B表达抑制三阴性乳腺癌细胞增殖与迁移[J]. 生物工程学报, 2023, 39(10): 4168-4188

复制
分享
文章指标
  • 点击次数:275
  • 下载次数: 1067
  • HTML阅读次数: 925
  • 引用次数: 0
历史
  • 收稿日期:2023-01-23
  • 录用日期:2023-04-21
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6370826位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司