Abstract:Mechanosensitive channels (MSCs) are special membrane proteins that can convert mechanical stimulation into electrical or chemical signals. These channels have become potential targets for ultrasonic neuromodulation due to their properties. The good spatial resolution and focusing effect of ultrasound make it theoretically possible to achieve non-invasive whole-brain localization. Therefore, ultrasonic neuromodulation is a promising method for performing physical neuromodulation and treating neurological disorders. To date, only a few ion channels have been reported to be activated by ultrasound, while recent research has identified more channels with mechanosensitive properties. Moreover, the opening process and mechanism of MSCs under ultrasound excitation remain unknown. This review provides an overview on recent research advances and applications in MSCs, including large conductance mechanosensitive channels, transient receptor potential channels, degenerated protein/epithelial sodium channels, two-pore potassium channels, and piezo channels. These findings will facilitate future studies and applications of ultrasonic neuromodulation.