病毒劫持ESCRT系统促进自身复制的研究进展
作者:
基金项目:

国家自然科学基金重点国际合作项目(32220103012);国家自然科学基金(32272978,32072868);上海市自然科学基金(21ZR1476800,20ZR1469400)


Virus hijacking ESCRT system to promote self-replication: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [169]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    内吞体分选转运复合体(endosomal sorting complex required for transport,ESCRT)系统驱动细胞的不同生命进程,包括内体分选、细胞器生物发生、囊泡运输、维持质膜完整性、细胞质分裂期间的膜裂变、有丝分裂后的核膜重组、自噬过程中吞噬孔的封闭以及包膜病毒出芽等。越来越多的证据表明,ESCRT系统能够被不同家族病毒劫持用于自身增殖。在病毒生命周期的不同阶段,病毒可以通过各种方式干扰或利用ESCRT系统介导的生理过程,最大限度地提高感染宿主的机会。此外,许多逆转录病毒和RNA病毒蛋白具有“晚期结构域”基序,可招募宿主ESCRT亚基蛋白帮助病毒内吞、运输、复制、出芽以及外排。因此,病毒“晚期结构域”基序和ESCRT亚基蛋白可能是病毒感染治疗中具有广泛应用前景的药物靶点。本文重点综述了ESCRT系统的组成及功能,ESCRT亚基和病毒“晚期结构域”基序对病毒复制的影响以及ESCRT介导的抗病毒作用,以期为抗病毒药物的开发和利用提供参考。

    Abstract:

    Endosomal sorting complex required for transport (ESCRT) system drives various cellular processes, including endosome sorting, organelle biogenesis, vesicle transport, maintenance of plasma membrane integrity, membrane fission during cytokinesis, nuclear membrane reformation after mitosis, closure of autophagic vacuoles, and enveloped virus budding. Increasing evidence suggests that the ESCRT system can be hijacked by different family viruses for their proliferation. At different stages of the virus life cycle, viruses can interfere with or exploit ESCRT-mediated physiological processes in various ways to maximize their chance of infecting the host. In addition, many retroviral and RNA viral proteins possess "late domain" motifs, which can recruit host ESCRT subunit proteins to assist in virus endocytosis, transport, replicate, budding and efflux. Therefore, the "late domain" motifs of viruses and ESCRT subunit proteins could serve as promising drug targets in antiviral therapy. This review focuses on the composition and functions of the ESCRT system, the effects of ESCRT subunits and virus "late domain" motifs on viral replication, and the antiviral effects mediated by the ESCRT system, aiming to provide a reference for the development and utilization of antiviral drugs.

    参考文献
    [1] HURLEY JH. The ESCRT complexes[J]. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45(6):463-487.
    [2] CALISTRI A, REALE A, PALÙ G, PAROLIN C. Why cells and viruses cannot survive without an ESCRT[J]. Cells, 2021, 10(3):483.
    [3] KOSTELANSKY MS, SUN J, LEE S, KIM J, GHIRLANDO R, HIERRO A, EMR SD, HURLEY JH. Structural and functional organization of the ESCRT-I trafficking complex[J]. Cell, 2006, 125(1):113-126.
    [4] KOSTELANSKY MS, SCHLUTER C, TAM YYC, LEE S, GHIRLANDO R, BEACH B, CONIBEAR E, HURLEY JH. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer[J]. Cell, 2007, 129(3):485-498.
    [5] HIERRO A, SUN J, RUSNAK AS, KIM J, PRAG G, EMR SD, HURLEY JH. Structure of the ESCRT-Ⅱ endosomal trafficking complex[J]. Nature, 2004, 431(7005):221-225.
    [6] STOTEN CL, CARLTON JG. ESCRT-dependent control of membrane remodelling during cell division[J]. Seminars in Cell & Developmental Biology, 2018, 74:50-65.
    [7] MIERZWA BE, CHIARUTTINI N, REDONDO-MORATA L, MOSER von FILSECK J, KÖNIG J, LARIOS J, POSER I, MÜLLER-REICHERT T, SCHEURING S, ROUX A, GERLICH DW. Dynamic subunit turnover in ESCRT-Ⅲ assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis[J]. Nature Cell Biology, 2017, 19(7):787-798.
    [8] JIMENEZ AJ, MAIURI P, LAFAURIE-JANVORE J, DIVOUX S, PIEL M, PEREZ F. ESCRT machinery is required for plasma membrane repair[J]. Science, 2014, 343(6174):e1247136.
    [9] SCHÖNEBERG J, LEE IH, IWASA JH, HURLEY JH. Reverse-topology membrane scission by the ESCRT proteins[J]. Nature Reviews Molecular Cell Biology, 2017, 18(1):5-17.
    [10] GU MY, LAJOIE D, CHEN OS, von APPEN A, LADINSKY MS, REDD MJ, NIKOLOVA L, BJORKMAN PJ, SUNDQUIST WI, ULLMAN KS, FROST A. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11):E2166-E2175.
    [11] COLOMBO M, MOITA C, van NIEL G, KOWAL J, VIGNERON J, BENAROCH P, MANEL N, MOITA LF, THÉRY C, RAPOSO G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles[J]. Journal of Cell Science, 2013:126(Pt 24):5553-5565.
    [12] BOHANNON KP, HANSON PI. ESCRT puts its thumb on the nanoscale:fixing tiny holes in endolysosomes[J]. Current Opinion in Cell Biology, 2020, 65:122-130.
    [13] SKOWYRA ML, SCHLESINGER PH, NAISMITH TV, HANSON PI. Triggered recruitment of ESCRT machinery promotes endolysosomal repair[J]. Science, 2018, 360(6384):eaar5078.
    [14] LIN TH, BIS-BREWER DM, SHEEHAN AE, TOWNSEND LN, MADDISON DC, ZÜCHNER S, SMITH GA, FREEMAN MR. TSG101 negatively regulates mitochondrial biogenesis in axons[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20):e2018770118.
    [15] FILIMONENKO M, STUFFERS S, RAIBORG C, YAMAMOTO A, MALERØD L, FISHER EMC, ISAACS A, BRECH A, STENMARK H, SIMONSEN A. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease[J]. Journal of Cell Biology, 2007, 179(3):485-500.
    [16] ZHEN Y, SPANGENBERG H, MUNSON MJ, BRECH A, SCHINK KO, TAN KW, SØRENSEN V, WENZEL EM, RADULOVIC M, ENGEDAL N, SIMONSEN A, RAIBORG C, STENMARK H. ESCRT-mediated phagophore sealing during mitophagy[J]. Autophagy, 2020, 16(5):826-841.
    [17] GARRUS JE, von SCHWEDLER UK, PORNILLOS OW, MORHAM SG, ZAVITZ KH, WANG HE, WETTSTEIN DA, STRAY KM, CÔTÉ M, RICH RL, MYSZKA DG, SUNDQUIST WI. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding[J]. Cell, 2001, 107(1):55-65.
    [18] HENNE WM, BUCHKOVICH NJ, EMR SD. The ESCRT pathway[J]. Developmental Cell, 2011, 21(1):77-91.
    [19] BI XJ, LIU W, DING X, LIANG S, ZHENG YF, ZHU XL, QUAN S, YI X, XIANG N, DU JP, LYU HY, YU D, ZHANG C, XU LA, GE WG, ZHAN XK, HE JL, XIONG Z, ZHANG S, LI YC, et al. Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19[J]. Cell Reports, 2022, 38(3):110271.
    [20] LIU CC, LIU YY, ZHOU JF, CHEN X, CHEN H, HU JH, CHEN J, ZHANG J, SUN RC, WEI JC, GO YY, MORITA E, ZHOU B. Cellular ESCRT components are recruited to regulate the endocytic trafficking and RNA replication compartment assembly during classical swine fever virus infection[J]. PLoS Pathogens, 2022, 18(2):e1010294.
    [21] LIUCC, LIU YY, CHENG Y, ZHANG YN, ZHANG J, LIANG XD, GAO Y, CHEN H, BALOCH AS, YANG Q, GO YY, ZHOU B. The ESCRT-I subunit Tsg101 plays novel dual roles in entry and replication of classical swine fever virus[J]. Journal of Virology, 2021, 95(6):e01928-20.
    [22] KUMAR B, DUTTA D, IQBAL J, ANSARI MA, ROY A, CHIKOTI L, PISANO G, VEETTIL MV, CHANDRAN B. ESCRT-I protein Tsg101 plays a role in the post-macropinocytic trafficking and infection of endothelial cells by kaposi's sarcoma-associated herpesvirus[J]. PLoS Pathogens, 2016, 12(10):e1005960.
    [23] ARIUMI Y, KUROKI M, MAKI M, IKEDA M, DANSAKO H, WAKITA T, KATO N. The ESCRT system is required for hepatitis C virus production[J]. PLoS One, 2011, 6(1):e14517.
    [24] CARPP LN, GALLER R, BONALDO MC. Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles[J]. Microbes and Infection, 2011, 13(1):85-95.
    [25] MANNEMUDDHU SS, XU HZ, BLECK CKE, TJANDRA N, CARTER C, BHADURI-MCINTOSH S. Prazoles targeting Tsg101 inhibit release of Epstein-Barr virus following reactivation from latency[J]. Journal of Virology, 2021, 95(13):e0246620.
    [26] DEMIROV DG, ONO A, ORENSTEIN JM, FREED EO. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2):955-960.
    [27] JIANG Y, LIU XY, de CLERCQ E. New therapeutic approaches targeted at the late stages of the HIV-1 replication cycle[J]. Current Medicinal Chemistry, 2011, 18(1):16-28.
    [28] ANANG S, KAUSHIK N, HINGANE S, KUMARI A, GUPTA J, ASTHANA S, SHALIMAR, NAYAK B, RANJITH-KUMAR CT, SURJIT M. Potent inhibition of hepatitis E virus release by a cyclic peptide inhibitor of the interaction between viral open reading frame 3 protein and host tumor susceptibility gene 101[J]. Journal of Virology, 2018, 92(20):e00684-18.
    [29] RHEINEMANN L, DOWNHOUR DM, BREDBENNER K, MERCENNE G, DAVENPORT KA, SCHMITT PT, NECESSARY CR, MCCULLOUGH J, SCHMITT AP, SIMON SM, SUNDQUIST WI, ELDE NC. RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis[J]. Cell, 2021, 184(21):5419-5431.e16.
    [30] RHEINEMANN L, DOWNHOUR DM, DAVENPORT KA, MCKEOWN AN, SUNDQUIST WI, ELDE NC. Recurrent evolution of an inhibitor of ESCRT-dependent virus budding and LINE-1 retrotransposition in primates[J]. Current Biology, 2022, 32(7):1511-1522.e6.
    [31] KATZMANN DJ, BABST M, EMR SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I[J]. Cell, 2001, 106(2):145-155.
    [32] LARIOS J, MERCIER V, ROUX A, GRUENBERG J. ALIX-and ESCRT-Ⅲ-dependent sorting of tetraspanins to exosomes[J]. The Journal of Cell Biology, 2020, 219(3):e201904113.
    [33] REN XF, HURLEY JH. Structural basis for endosomal recruitment of ESCRT-I by ESCRT-0 in yeast[J]. The EMBO Journal, 2011, 30(11):2130-2139.
    [34] MORITA E, SANDRIN V, CHUNG HY, MORHAM SG, GYGI SP, RODESCH CK, SUNDQUIST WI. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis[J]. The EMBO Journal, 2007, 26(19):4215-4227.
    [35] HORVÁTH P, MÜLLER-REICHERT T. A structural view on ESCRT-mediated abscission[J]. Frontiers in Cell and Developmental Biology, 2020, 8:586880.
    [36] GILL DJ, TEO H, SUN J, PERISIC O, VEPRINTSEV DB, EMR SD, WILLIAMS RL. Structural insight into the ESCRT-I/-Ⅱ link and its role in MVB trafficking[J]. The EMBO Journal, 2007, 26(2):600-612.
    [37] PFITZNERAK, MERCIER V, JIANG XY, MOSER von FILSECK J, BAUM B, ŠARIĆ A, ROUX A. An ESCRT-Ⅲ polymerization sequence drives membrane deformation and fission[J]. Cell, 2020, 182(5):1140-1155.e18.
    [38] TEIS D, SAKSENA S, JUDSON BL, EMR SD. ESCRT-Ⅱ coordinates the assembly of ESCRT-Ⅲ filaments for cargo sorting and multivesicular body vesicle formation[J]. The EMBO Journal, 2010, 29(5):871-883.
    [39] MONROE N, HILL CP. Meiotic clade AAA ATPases:protein polymer disassembly machines[J]. Journal of Molecular Biology, 2016, 428(9):1897-1911.
    [40] BABST M. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p[J]. The EMBO Journal, 1997, 16(8):1820-1831.
    [41] BABST M, DAVIES BA, KATZMANN DJ. Regulation of Vps4 during MVB sorting and cytokinesis[J]. Traffic, 2011, 12(10):1298-1305.
    [42] SAUER RT, BAKER TA. AAA+ proteases:ATP-fueled machines of protein destruction[J]. Annual Review of Biochemistry, 2011, 80:587-612.
    [43] MCCULLOUGH J, FROST A, SUNDQUIST WI. Structures, functions, and dynamics of ESCRT-Ⅲ/Vps4 membrane remodeling and fission complexes[J]. Annual Review of Cell and Developmental Biology, 2018, 34:85-109.
    [44] MEISTER M, BÄNFER S, GÄRTNER U, KOSKIMIES J, AMADDII M, JACOB R, TIKKANEN R. Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo[J]. Oncogenesis, 2017, 6(6):e344.
    [45] MCKNIGHT NC, ZHONG Y, WOLD MS, GONG S, PHILLIPS GR, DOU ZX, ZHAO YX, HEINTZ N, ZONG WX, YUE ZY. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex[J]. PLoS Genetics, 2014, 10(10):e1004626.
    [46] KIM HJ, ZHONG Q, SHENG ZH, YOSHIMORI T, LIANG CY, JUNG JU. Beclin 1-interacting autophagy protein Atg14L targets SNARE-associated protein Snapin to coordinate endocytic trafficking[J]. Journal of Cell Science, 2012, 125(Pt 20):4740-4750.
    [47] MURROW L, MALHOTRA R, DEBNATH J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function[J]. Nature Cell Biology, 2015, 17(3):300-310.
    [48] MURROW L, DEBNATH J. ATG12-ATG3 connects basal autophagy and late endosome function[J]. Autophagy, 2015, 11(6):961-962.
    [49] MARTIN-SERRANO J, MARSH M. ALIX catches HIV[J]. Cell Host & Microbe, 2007, 1(1):5-7.
    [50] DIAZ L, MAO HW, ZHOU Y, KOHLI M, CASSELLA J, SANTOS D, FESSEHA Z, WENG K, CHEN H, BAMBA D, MARKS JD, GOLDBLATT M, KINCH M. TSG101 exposure on the surface of HIV-1 infected cells:implications for monoclonal antibody therapy for HIV/AIDS[J]. American Journal of Translational Research, 2010, 2(4):368-380.
    [51] STRECK NT, CARMICHAEL J, BUCHKOVICH NJ. Nonenvelopment role for the ESCRT-Ⅲ complex during human cytomegalovirus infection[J]. Journal of Virology, 2018, 92(12):e02096-17.
    [52] BUSSIENNE C, MARQUET R, PAILLART JC, BERNACCHI S. Post-translational modifications of retroviral HIV-1 gag precursors:an overview of their biological role[J]. International Journal of Molecular Sciences, 2021, 22(6):2871.
    [53] CHUNG HY, MORITA E, von SCHWEDLER U, MÜLLER B, KRÄUSSLICH HG, SUNDQUIST WI. NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains[J]. Journal of Virology, 2008, 82(10):4884-4897.
    [54] HAN ZY, SAGUM CA, BEDFORD MT, SIDHU SS, SUDOL M, HARTY RN. ITCH E3 ubiquitin ligase interacts with Ebola virus VP40 to regulate budding[J]. Journal of Virology, 2016, 90(20):9163-9171.
    [55] OKUMURA A, RASMUSSEN AL, HALFMANN P, FELDMANN F, YOSHIMURA A, FELDMANN H, KAWAOKA Y, HARTY RN, KATZE MG. Suppressor of cytokine signaling 3 is an inducible host factor that regulates virus egress during Ebola virus infection[J]. Journal of Virology, 2015, 89(20):10399-10406.
    [56] DOLNIK O, KOLESNIKOVA L, WELSCH S, STRECKER T, SCHUDT G, BECKER S. Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in Marburg virus-infected cells[J]. PLoS Pathogens, 2014, 10(10):e1004463.
    [57] MENG B, IP NCY, PRESTWOOD LJ, ABBINK TEM, LEVER AML. Evidence that the endosomal sorting complex required for transport-Ⅱ (ESCRT-Ⅱ) is required for efficient human immunodeficiency virus-1(HIV-1) production[J]. Retrovirology, 2015, 12:72.
    [58] CHEN YP, LI JH, ZHOU Y, FENG Y, GUAN X, LI DC, REN XY, GAO S, HUANG JS, GUAN XT, SHI W, LIU M. The role of infectious hematopoietic necrosis virus (IHNV) proteins in recruiting the ESCRT pathway through three ways in the host cells of fish during IHNV budding[J]. Fish & Shellfish Immunology, 2019, 92:833-841.
    [59] HURLEY JH. ESCRTs are everywhere[J]. The EMBO Journal, 2015, 34(19):2398-2407.
    [60] JUYC, BAI HC, REN LZ, ZHANG LY. The role of exosome and the ESCRT pathway on enveloped virus infection[J]. International Journal of Molecular Sciences, 2021, 22(16):9060.
    [61] WAGNERKU, KREMPLER A, QI YY, PARK K, HENRY MD, TRIPLETT AA, RIEDLINGER G, RUCKER Ⅲ EB, HENNIGHAUSEN L. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues[J]. Molecular and Cellular Biology, 2003, 23(1):150-162.
    [62] CHEN HF, LIU XY, LI ZY, ZHAN P, de CLERCQ E. TSG101:a novel anti-HIV-1 drug target[J]. Current Medicinal Chemistry, 2010, 17(8):750-758.
    [63] CHUA HH, LEE HH, CHANG SS, LU CC, YEH TH, HSU TY, CHENG TH, CHENG JT, CHEN MR, TSAI CH. Role of the TSG101 gene in Epstein-Barr virus late gene transcription[J]. Journal of Virology, 2007, 81(5):2459-2471.
    [64] STRICKLAND M, EHRLICH LS, WATANABE S, KHAN M, STRUB MP, LUAN CH, POWELL MD, LEIS J, TJANDRA N, CARTER CA. Tsg101 chaperone function revealed by HIV-1 assembly inhibitors[J]. Nature Communications, 2017, 8(1):1391.
    [65] LUYET PP, FALGUIÈRES T, PONS V, PATTNAIK AK, GRUENBERG J. The ESCRT-I subunit TSG101 controls endosome-to-cytosol release of viral RNA[J]. Traffic, 2008, 9(12):2279-2290.
    [66] CADUCO M, COMIN A, TOFFOLETTO M, MUNEGATO D, SARTORI E, CELESTINO M, SALATA C, PAROLIN C, PALÙ G, CALISTRI A. Tsg101 interacts with herpes simplex virus 1 VP1/2 and is a substrate of VP1/2 ubiquitin-specific protease domain activity[J]. Journal of Virology, 2013, 87(1):692-696.
    [67] CALISTRI A, MUNEGATO D, TOFFOLETTO M, CELESTINO M, FRANCHIN E, COMIN A, SARTORI E, SALATA C, PAROLIN C, PALÙ G. Functional interaction between the ESCRT-I component TSG101 and the HSV-1 tegument ubiquitin specific protease[J]. Journal of Cellular Physiology, 2015, 230(8):1794-1806.
    [68] MCCULLOUGH J, FISHER RD, WHITBY FG, SUNDQUIST WI, HILL CP. ALIX-CHMP4 interactions in the human ESCRT pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22):7687-7691.
    [69] DORES MR, CHENBX, LIN HL, SOH UJK, PAING MM, MONTAGNE WA, MEERLOO T, TREJO J. ALIX binds a YPX3L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-Ⅲ/MVB sorting[J]. Journal of Cell Biology, 2012, 197(3):407-419.
    [70] ZHAI QT, LANDESMAN MB, CHUNG HY, DIERKERS A, JEFFRIES CM, TREWHELLA J, HILL CP, SUNDQUIST WI. Activation of the retroviral budding factor ALIX[J]. Journal of Virology, 2011, 85(17):9222-9226.
    [71] ZHOU X, SI JL, CORVERA J, GALLICK GE, KUANG J. Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins[J]. The Biochemical Journal, 2010, 432(3):525-534.
    [72] TORICES S, ROBERTS SA, PARK M, MALHOTRA A, TOBOREK M. Occludin, caveolin-1, and Alix form a multi-protein complex and regulate HIV-1 infection of brain pericytes[J]. The FASEB Journal, 2020, 34(12):16319-16332.
    [73] SHTANKO O, WATANABE S, JASENOSKY LD, WATANABE T, KAWAOKA Y. ALIX/AIP1 is required for NP incorporation into Mopeia virus Z-induced virus-like particles[J]. Journal of Virology, 2011, 85(7):3631-3641.
    [74] SETTE P, MU RL, DUSSUPT V, JIANG JS, SNYDER G, SMITH P, XIAO TS, BOUAMR F. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release[J]. Structure (London, England:1993), 2011, 19(10):1485-1495.
    [75] del VECCHIO C, CELESTINO M, CELEGATO M, PALÙ G, PAROLIN C, BOUAMR F, CALISTRI A. Alix-mediated rescue of feline immunodeficiency virus budding differs from that observed with human immunodeficiency virus[J]. Journal of Virology, 2020, 94(11):e02019-19.
    [76] JIANG W, MA PJ, DENG LB, LIU Z, WANG X, LIU XY, LONG G. Hepatitis A virus structural protein pX interacts with ALIX and promotes the secretion of virions and foreign proteins through exosome-like vesicles[J]. Journal of Extracellular Vesicles, 2020, 9(1):1716513.
    [77] SHIRASAKI T, FENG H, DUYVESTEYN HME, FUSCO WG, MCKNIGHT KL, XIE L, BOYCE M, KUMAR S, BAROUCH-BENTOV R, GONZÁLEZ-LÓPEZ O, MCNAMARA R, WANG L, HERTEL-WULFF A, CHEN X, EINAV S, DUNCAN JA, KAPUSTINA M, FRY EE, STUART DI, LEMON SM. Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX[J]. PLoS Pathogens, 2022, 18(8):e1010543.
    [78] IRIE T, NAGATA N, YOSHIDA T, SAKAGUCHI T. Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles[J]. Virology, 2008, 371(1):108-120.
    [79] SAKAGUCHI T, KATO A, SUGAHARA F, SHIMAZU Y, INOUE M, KIYOTANI K, NAGAI Y, YOSHIDA T. AIP1/Alix is a binding partner of Sendai virus C protein and facilitates virus budding[J]. Journal of Virology, 2005, 79(14):8933-8941.
    [80] ODA K, MATOBA Y, SUGIYAMA M, SAKAGUCHI T. Structural insight into the interaction of Sendai virus C protein with alix to stimulate viral budding[J]. Journal of Virology, 2021, 95(19):e0081521.
    [81] IRIE T, SHIMAZU Y, YOSHIDA T, SAKAGUCHI T. The YLDL sequence within Sendai virus M protein is critical for budding of virus-like particles and interacts with alix/AIP1 independently of C protein[J]. Journal of Virology, 2007, 81(5):2263-2273.
    [82] DOWLATSHAHI DP, SANDRIN V, VIVONA S, SHALER TA, KAISER SE, MELANDRI F, SUNDQUIST WI, KOPITO RR. ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding[J]. Developmental Cell, 2012, 23(6):1247-1254.
    [83] KEREN-KAPLAN T, ATTALI I, ESTRIN M, KUO LS, FARKASH E, JERABEK-WILLEMSEN M, BLUTRAICH N, ARTZI S, PERI A, FREED EO, WOLFSON HJ, PRAG G. Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding[J]. The EMBO Journal, 2013, 32(4):538-551.
    [84] BOONYARATANAKORNKIT J, SCHOMACKER H, COLLINS P, SCHMIDT A. Alix serves as an adaptor that allows human parainfluenza virus type 1 to interact with the host cell ESCRT system[J]. PLoS One, 2013, 8(3):e59462.
    [85] PATIL A, BHATTACHARYA J. Natural deletion of L35Y36 in p6 gag eliminate LYPXnL/ALIX auxiliary virus release pathway in HIV-1 subtype C[J]. Virus Research, 2012, 170(1/2):154-158.
    [86] BISSIG C, LENOIR M, VELLUZ MC, KUFAREVA I, ABAGYAN R, OVERDUIN M, GRUENBERG J. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX[J]. Developmental Cell, 2013, 25(4):364-373.
    [87] CHATURBHUJ D, PATIL A, GANGAKHEDKAR R. PYRE insertion within HIV-1 subtype C p6-Gag functions as an ALIX-dependent late domain[J]. Scientific Reports, 2018, 8(1):8917.
    [88] STRACK B, CALISTRI A, CRAIG S, POPOVA E, GÖTTLINGER HG. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding[J]. Cell, 2003, 114(6):689-699.
    [89] ZHAI QT, LANDESMAN MB, ROBINSON H, SUNDQUIST WI, HILL CP. Identification and structural characterization of the ALIX-binding late domains of Simian immunodeficiency virus SIVmac239 and SIVagmTan-1[J]. Journal of Virology, 2011, 85(1):632-637.
    [90] BARDENS A, DÖRING T, STIELER J, PRANGE R. Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner[J]. Cellular Microbiology, 2011, 13(4):602-619.
    [91] RABE B, GLEBE D, KANN M. Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events[J]. Journal of Virology, 2006, 80(11):5465-5473.
    [92] MI S, QIN XW, LIN YF, HE J, CHEN NN, LIU C, WENG SP, HE JG, GUO CJ. Budding of tiger frog virus (an Iridovirus) from HepG2 cells via three ways recruits the ESCRT pathway[J]. Scientific Reports, 2016, 6:26581.
    [93] VEETTIL MV, KUMAR B, ANSARI MA, DUTTA D, IQBAL J, GJYSHI O, BOTTERO V, CHANDRAN B. ESCRT-0 component hrs promotes macropinocytosis of kaposi's sarcoma-associated herpesvirus in human dermal microvascular endothelial cells[J]. Journal of Virology, 2016, 90(8):3860-3872.
    [94] CHOU SF, TSAI ML, HUANG JY, CHANG YS, SHIH C. The dual role of an ESCRT-0 component HGS in HBV transcription and naked capsid secretion[J]. PLoS Pathogens, 2015, 11(10):e1005123.
    [95] BAROUCH-BENTOV R, NEVEU G, XIAO F, BEER M, BEKERMAN E, SCHOR S, CAMPBELL J, BOONYARATANAKORNKIT J, LINDENBACH B, LU A, JACOB Y, EINAV S. Hepatitis C virus proteins interact with the endosomal sorting complex required for transport (ESCRT) machinery via ubiquitination to facilitate viral envelopment[J]. mBio, 2016, 7(6):e01456-16.
    [96] MARTINI F, ARONE C, HASSET A, HALL WW, SHEEHY N. The ESCRT-0 protein HRS interacts with the human T cell leukemia virus type 2 antisense protein APH-2 and suppresses viral replication[J]. Journal of Virology, 2019, 94(1):e01311-19.
    [97] TAMAI K, SHIINA M, TANAKA N, NAKANO T, YAMAMOTO A, KONDO Y, KAKAZU E, INOUE J, FUKUSHIMA K, SANO K, UENO Y, SHIMOSEGAWA T, SUGAMURA K. Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway[J]. Virology, 2012, 422(2):377-385.
    [98] BOUAMR F, HOUCK-LOOMIS BR, de LOS SANTOS M, CASADAY RJ, JOHNSON MC, GOFF SP. The C-terminal portion of the hrs protein interacts with Tsg101 and interferes with human immunodeficiency virus type 1 gag particle production[J]. Journal of Virology, 2007, 81(6):2909-2922.
    [99] PRIMADHARSINI PP, NAGASHIMA S, TAKAHASHI M, KOBAYASHI T, NISHIYAMA T, NISHIZAWA T, YASUDA J, MULYANTO, OKAMOTO H. Multivesicular body sorting and the exosomal pathway are required for the release of rat hepatitis E virus from infected cells[J]. Virus Research, 2020, 278:197868.
    [100] PATTON GS, MORRIS SA, CHUNG W, BIENIASZ PD, MCCLURE MO. Identification of domains in gag important for prototypic foamy virus egress[J]. Journal of Virology, 2005, 79(10):6392-6399.
    [101] HOFFMANN J, BOEHM C, HIMMELSBACH K, DONNERHAK C, ROETTGER H, WEISS TS, PLOEN D, HILDT E. Identification of α-taxilin as an essential factor for the life cycle of hepatitis B virus[J]. Journal of Hepatology, 2013, 59(5):934-941.
    [102] WAN YL, CHEN Y, WANG T, ZHAO B, ZENG W, ZHANG LY, ZHANG YM, CAO SY, WANG JY, XUE QH, QI XF. PPRV-induced autophagy facilitates infectious virus transmission by the exosomal pathway[J]. Journal of Virology, 2022, 96(7):e0024422.
    [103] LU JH, HAN ZY, LIU YL, LIU WB, LEE MS, OLSON MA, RUTHEL G, FREEDMAN BD, HARTY RN. A host-oriented inhibitor of Junin Argentine hemorrhagic fever virus egress[J]. Journal of Virology, 2014, 88(9):4736-4743.
    [104] PARK A, YUN T, VIGANT F, PERNET O, WON ST, DAWES BE, BARTKOWSKI W, FREIBERG AN, LEE B. Nipah virus C protein recruits Tsg101 to promote the efficient release of virus in an ESCRT-dependent pathway[J]. PLoS Pathogens, 2016, 12(5):e1005659.
    [105] CHUDAK C, BEIMFORDE N, GEORGE M, ZIMMERMANN A, LAUSCH V, HANKE K, BANNERT N. Identification of late assembly domains of the human endogenous retrovirus-K(HML-2)[J]. Retrovirology, 2013, 10(1):140.
    [106] SANYAL S, ASHOUR J, MARUYAMA T, ALTENBURG AF, CRAGNOLINI JJ, BILATE A, AVALOS AM, KUNDRAT L, GARCÍA-SASTRE A, PLOEGH HL. Type I interferon imposes a TSG101/ISG15 checkpoint at the Golgi for glycoprotein trafficking during influenza virus infection[J]. Cell Host & Microbe, 2013, 14(5):510-521.
    [107] ZHANG LX, LI R, GENG R, WANG L, CHEN XX, QIAO SL, ZHANG GP. Tumor susceptibility gene 101(TSG101) contributes to virion formation of porcine reproductive and respiratory syndrome virus via interaction with the nucleocapsid (N) protein along with the early secretory pathway[J]. Journal of Virology, 2022, 96(6):e0000522.
    [108] STRICKLAND M, NYENHUIS D, WATANABE SM, TJANDRA N, CARTER CA. Novel Tsg101 binding partners regulate viral L domain trafficking[J]. Viruses, 2021, 13(6):1147.
    [109] MYERS EL, ALLEN JF. Tsg101, an inactive homologue of ubiquitin ligase E2, interacts specifically with human immunodeficiency virus type 2 gag polyprotein and results in increased levels of ubiquitinated gag[J]. Journal of Virology, 2002, 76(22):11226-11235.
    [110] VOTTELER J, SUNDQUIST WI. Virus budding and the ESCRT pathway[J]. Cell Host & Microbe, 2013, 14(3):232-241.
    [111] VERPLANK L, BOUAMR F, LAGRASSA TJ, AGRESTA B, KIKONYOGO A, LEIS J, CARTER CA. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14):7724-7729.
    [112] SETTE P, NAGASHIMA K, PIPER RC, BOUAMR F. Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding[J]. Retrovirology, 2013, 10(1):79.
    [113] YASUDA J, NAKAO M, KAWAOKA Y, SHIDA H. Nedd4 regulates egress of Ebola virus-like particles from host cells[J]. Journal of Virology, 2003, 77(18):9987-9992.
    [114] VOTTELER J, IAVNILOVITCH E, FINGRUT O, SHEMESH V, TAGLICHT D, EREZ O, SÖRGEL S, WALTHER T, BANNERT N, SCHUBERT U, REISS Y. Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release[J]. BMC Biochemistry, 2009, 10(1):1-14.
    [115] WANG ZH, LI R, LIU CX, QIAO WT, TAN J. Characterization of bovine foamy virus gag late assembly domain motifs and their role in recruiting ESCRT for budding[J]. Viruses, 2022, 14(3):522.
    [116] van DOMSELAAR R, NJENDA DT, RAO R, SÖNNERBORG A, SINGH K, NEOGI U. HIV-1 subtype C with PYxE insertion has enhanced binding of gag-p6 to host cell protein ALIX and increased replication fitness[J]. Journal of Virology, 2019, 93(9):e00077-19.
    [117] GONZÁLEZ-LÓPEZ O, RIVERA-SERRANO EE, HU FY, HENSLEY L, MCKNIGHT KL, REN JS, STUART DI, FRY EE, LEMON SM. Redundant late domain functions of tandem VP2 YPX3 L motifs in nonlytic cellular egress of quasi-enveloped hepatitis A virus[J]. Journal of Virology, 2018, 92(23):e01308-18.
    [118] ARII J, TAKESHIMA K, MARUZURU Y, KOYANAGI N, NAKAYAMA Y, KATO A, MORI Y, KAWAGUCHI Y:role of the arginine cluster in the disordered domain of herpes simplex virus 1 UL34 for the recruitment of ESCRT-Ⅲ for viral primary envelopment[J]. Journal of Virology, 2022, 96(2):e0170421.
    [119] THEPPARIT C, KHONGWICHIT S, KETSUWAN K, LIBSITTIKUL S, AUEWARAKUL P, SMITH DR. Dengue virus requires apoptosis linked gene-2-interacting protein X (ALIX) for viral propagation[J]. Virus Research, 2019, 261:65-71.
    [120] TRANPTH, CHIRAMEL AI, JOHANSSON M, MELIK W. Roles of ESCRT proteins ALIX and CHMP4A and their interplay with interferon-stimulated gene 15 during tick-borne flavivirus infection[J]. Journal of Virology, 2022, 96(3):e0162421.
    [121] AHMED I, AKRAM Z, IQBAL HMN, MUNN AL. The regulation of endosomal sorting complex required for transport and accessory proteins in multivesicular body sorting and enveloped viral budding-an overview[J]. International Journal of Biological Macromolecules, 2019, 127:1-11.
    [122] HAN ZY, MADARA JJ, LIU YL, LIU WB, RUTHEL G, FREEDMAN BD, HARTY RN. ALIX rescues budding of a double PTAP/PPEY L-domain deletion mutant of Ebola VP40:a role for ALIX in Ebola virus egress[J]. The Journal of Infectious Diseases, 2015, 212(suppl_2):S138-S145.
    [123] YAMAYOSHI S, KAWAOKA Y. Mapping of a region of Ebola virus VP40 that is important in the production of virus-like particles[J]. The Journal of Infectious Diseases, 2007, 196(supplement_2):S291-S295.
    [124] IRIE T, LICATA JM, MCGETTIGAN JP, SCHNELL MJ, HARTY RN. Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A[J]. Journal of Virology, 2004, 78(6):2657-2665.
    [125] LICATA JM, SIMPSON-HOLLEY M, WRIGHT NT, HAN ZY, PARAGAS J, HARTY RN. Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains:involvement of host proteins TSG101 and VPS-4[J]. Journal of Virology, 2003, 77(3):1812-1819.
    [126] MARTIN-SERRANO J, ZANG T, BIENIASZ PD. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress[J]. Nature Medicine, 2001, 7(12):1313-1319.
    [127] BRONIARCZYK J, BERGANT M, GOŹDZICKA-JÓZEFIAK A, BANKS L. Human papillomavirus infection requires the TSG101 component of the ESCRT machinery[J]. Virology, 2014, 460/461:83-90.
    [128] BRONIARCZYK J, PIM D, MASSIMI P, BERGANT M, GOŹDZICKA-JÓZEFIAK A, CRUMP C, BANKS L. The VPS4 component of the ESCRT machinery plays an essential role in HPV infectious entry and capsid disassembly[J]. Scientific Reports, 2017, 7:45159.
    [129] HUTTUNEN M, SAMOLEJ J, EVANS RJ, YAKIMOVICH A, WHITE IJ, KRISTON-VIZI J, MARTIN-SERRANO J, SUNDQUIST WI, FRICKEL EM, MERCER J. Vaccinia virus hijacks ESCRT-mediated multivesicular body formation for virus egress[J]. Life Science Alliance, 2021, 4(8):e202000910.
    [130] MEDINA GN, EHRLICH LS, CHEN MH, KHAN MB, POWELL MD, CARTER CA. Sprouty 2 binds ESCRT-Ⅱ factor Eap20 and facilitates HIV-1 gag release[J]. Journal of Virology, 2011, 85(14):7353-7362.
    [131] DEJARNAC O, HAFIRASSOU ML, CHAZAL M, VERSAPUECH M, GAILLARD J, PERERA-LECOIN M, UMANA-DIAZ C, BONNET-MADIN L, CARNEC X, TINEVEZ JY, DELAUGERRE C, SCHWARTZ O, ROINGEARD P, JOUVENET N, BERLIOZ-TORRENT C, MEERTENS L, AMARA A. TIM-1 ubiquitination mediates dengue virus entry[J]. Cell Reports, 2018, 23(6):1779-1793.
    [132] RUSSELL T, SAMOLEJ J, HOLLINSHEAD M, SMITH GL, KITE J, ELLIOTT G. Novel role for ESCRT-Ⅲ component CHMP4C in the integrity of the endocytic network utilized for herpes simplex virus envelopment[J]. mBio, 2021, 12(3):e02183-20.
    [133] BARNES J, WILSON DW. The ESCRT-Ⅱ subunit EAP20/VPS25 and the Bro1 domain proteins HD-PTP and BROX are individually dispensable for herpes simplex virus 1 replication[J]. Journal of Virology, 2020, 94(4):e01641-19.
    [134] STIELER JT, PRANGE R. Involvement of ESCRT-Ⅱ in hepatitis B virus morphogenesis[J]. PLoS One, 2014, 9(3):e91279.
    [135] SHEHU-XHILAGA M, ABLAN S, DEMIROV DG, CHEN CP, MONTELARO RC, FREED EO. Late domain-dependent inhibition of equine infectious anemia virus budding[J]. Journal of Virology, 2004, 78(2):724-732.
    [136] RAY G, SCHMITT P, SCHMITT A. Angiomotin-like 1 links paramyxovirus M proteins to NEDD4 family ubiquitin ligases[J]. Viruses, 2019, 11(2):128.
    [137] RAUCH S, MARTIN-SERRANO J. Multiple interactions between the ESCRT machinery and arrestin-related proteins:implications for PPXY-dependent budding[J]. Journal of Virology, 2011, 85(7):3546-3556.
    [138] ZIEGLER CM, DANG L, EISENHAUER P, KELLY JA, KING BR, KLAUS JP, MANUELYAN I, MATTICE EB, SHIRLEY DJ, WEIR ME, BRUCE EA, BALLIF BA, BOTTEN J. NEDD4 family ubiquitin ligases associate with LCMV Z's PPXY domain and are required for virus budding, but not via direct ubiquitination of Z[J]. PLoS Pathogens, 2019, 15(11):e1008100.
    [139] GÖTTLINGER HG, DORFMAN T, SODROSKI JG, HASELTINE WA. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(8):3195-3199.
    [140] LIN CY, URBINA A, WANG WH, THITITHANYANONT A, WANG SF. Virus hijacks host proteins and machinery for assembly and budding, with HIV-1 as an example[J]. Viruses, 2022, 14(7):1528.
    [141] WELKER L, PAILLART JC, BERNACCHI S. Importance of viral late domains in budding and release of enveloped RNA viruses[J]. Viruses, 2021, 13(8):1559.
    [142] DUSSUPT V, JAVID MP, ABOU-JAOUDÉ G, JADWIN JA, dela CRUZ J, NAGASHIMA K, BOUAMR F. The nucleocapsid region of HIV-1 gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding[J]. PLoS Pathogens, 2009, 5(3):e1000339.
    [143] LIU F, STEPHEN AG, WAHEED AA, FREED EO, FISHER RJ, BURKE TR JR. Application of ring-closing metathesis macrocyclization to the development of Tsg101-binding antagonists[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(1):318-321.
    [144] GOFF A, EHRLICH LS, COHEN SN, CARTER CA. Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release[J]. Journal of Virology, 2003, 77(17):9173-9182.
    [145] KENNEY SP, WENTWORTH JL, HEFFRON CL, MENT XJ. Replacement of the hepatitis E virus ORF3 protein PxxP motif with heterologous late domain motifs affects virus release via interaction with TSG101[J]. Virology, 2015, 486:198-208.
    [146] MAKINO A, YAMAYOSHI S, SHINYA K, NODA T, KAWAOKA Y. Identification of amino acids in Marburg virus VP40 that are important for virus-like particle budding[J]. The Journal of Infectious Diseases, 2011, 204(suppl_3):S871-S877.
    [147] TANZI GO, PIEFER AJ, BATES P. Equine infectious Anemia virus utilizes host vesicular protein sorting machinery during particle release[J]. Journal of Virology, 2003, 77(15):8440-8447.
    [148] HEIDECKER G, LLOYD PA, FOX K, NAGASHIMA K, DERSE D. Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release[J]. Journal of Virology, 2004, 78(12):6636-6648.
    [149] COREN LV, NAGASHIMA K, OTT DE. A PLPPV sequence in the p8 region of Gag provides late domain function for mouse mammary tumor virus[J]. Virology, 2019, 535:272-278.
    [150] CHEN CP, VINCENT O, JIN J, WEISZ OA, MONTELARO RC. Functions of early (AP-2) and late (AIP1/ALIX) endocytic proteins in equine infectious Anemia virus budding[J]. Journal of Biological Chemistry, 2005, 280(49):40474-40480.
    [151] ROSSMAN JS, JING XH, LESER GP, LAMB RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission[J]. Cell, 2010, 142(6):902-913.
    [152] DUAN ZQ, HU ZL, ZHU J, XU HX, CHEN J, LIU HM, HU SL, LIU XF. Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding[J]. Archives of Virology, 2014, 159(7):1813-1819.
    [153] PENG TY, QIU XS, TAN L, YU SQ, YANG BH, DAI J, LIU XW, SUN YJ, SONG CP, LIU WW, MENG CC, LIAO Y, YUAN WF, REN T, LIU XF, DING C. Ubiquitination on lysine 247 of Newcastle disease virus matrix protein enhances viral replication and virulence by driving nuclear-cytoplasmic trafficking[J]. Journal of Virology, 2022, 96(2):e0162921.
    [154] 段云兵, 汪军卿, 仇旭升, 谭磊, 丁铲, 张源淑. 新城疫病毒M蛋白通过自身核定位信号介导进入宿主细胞核[J]. 南京农业大学学报, 2014, 37(2):105-110. DUAN YB, WANG JQ, QIU XS, TAN L, DING C, ZHANG YS. Matrix protein of Newcastle disease virus localizes to the nuclei by its nuclear localization signal[J]. Journal of Nanjing Agricultural University, 2014, 37(2):105-110(in Chinese).
    [155] 彭听雨, 杨冰欢, 谭磊, 孙英杰, 宋翠萍, 刘炜玮, 廖瑛, 丁铲, 仇旭升. 新城疫病毒M蛋白247位赖氨酸对其功能的影响[J]. 中国动物传染病学报, 2021:1-10. PENG TY, YANG BH, TAN L, SUN YJ, Song CP, LIU WW, Liao Y, Ding C, QIU XS. Effect of 247 lysine in Newcastle disease virus matrix protein on its functions[J]. Chinese Journal of Animal Infectious Diseases, 2021:1-10(in Chinese).
    [156] FELLER U, DOUGHERTY RM, DI STEFANO HS. Morphogenesis of Newcastle disease virus in chorioallantoic membrane[J]. Journal of Virology, 1969, 4(5):753-762.
    [157] SAKURAI A, YASUDA J, TAKANO H, TANAKA Y, HATAKEYAMA M, SHIDA H. Regulation of human T-cell leukemia virus type 1(HTLV-1) budding by ubiquitin ligase Nedd4[J]. Microbes and Infection, 2004, 6(2):150-156.
    [158] DILLEY KA, GREGORY D, JOHNSON MC, VOGT VM. An LYPSL late domain in the gag protein contributes to the efficient release and replication of Rous sarcoma virus[J]. Journal of Virology, 2010, 84(13):6276-6287.
    [159] CALISTRI A, del VECCHIO C, SALATA C, CELESTINO M, CELEGATO M, GÖTTLINGER H, PALÙ G, PAROLIN C. Role of the feline immunodeficiency virus L-domain in the presence or absence of Gag processing:involvement of ubiquitin and Nedd4-2s ligase in viral egress[J]. Journal of Cellular Physiology, 2009, 218(1):175-182.
    [160] MARCUCCI KT, MARTINA Y, HARRISON F, WILSON CA, SALOMON DR. Functional hierarchy of two L domains in porcine endogenous retrovirus (PERV) that influence release and infectivity[J]. Virology, 2008, 375(2):637-645.
    [161] DOLNIK O, KOLESNIKOVA L, STEVERMANN L, BECKER S. Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles[J]. Journal of Virology, 2010, 84(15):7847-7856.
    [162] URATA S, NODA T, KAWAOKA Y, MORIKAWA S, YOKOSAWA H, YASUDA J. Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP[J]. Journal of Virology, 2007, 81(9):4895-4899.
    [163] NAGASHIMA S, TAKAHASHI M, JIRINTAI S, TANAKA T, NISHIZAWA T, YASUDA J, OKAMOTO H. Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions[J]. Journal of General Virology, 2011, 92(12):2838-2848.
    [164] SIAROT L, CHUTIWITOONCHAI N, SATO H, CHANG H, SATO H, FUJINO M, MURAKAMI T, AONO T, KODAMA E, KURODA K, TAKEI M, AIDA Y. Identification of human immunodeficiency virus type-1 Gag-TSG101 interaction inhibitors by high-throughput screening[J]. Biochemical and Biophysical Research Communications, 2018, 503(4):2970-2976.
    [165] MARTINS AN, WAHEED AA, ABLAN SD, HUANG W, NEWTON A, PETROPOULOS CJ, BRINDEIRO RDM, FREED EO. Elucidation of the molecular mechanism driving duplication of the HIV-1 PTAP late domain[J]. Journal of Virology, 2015, 90(2):768-779.
    [166] TAVASSOLI A, LU Q, GAM J, PAN H, BENKOVIC SJ, COHEN SN. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the gag-TSG101 interaction[J]. ACS Chemical Biology, 2008, 3(12):757-764.
    [167] GOILA-GAUR R, DEMIROV DG, ORENSTEIN JM, ONO A, FREED EO. Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression[J]. Journal of Virology, 2003, 77(11):6507-6519.
    [168] LEIS J, LUANCH, AUDIA JE, DUNNE SF, HEATH CM. Ilaprazole and other novel prazole-based compounds that bind Tsg101 inhibit viral budding of herpes simplex virus 1 and 2 and human immunodeficiency virus from cells[J]. Journal of Virology, 2021, 95(11):e00190-21.
    [169] SILVESTRI LS, RUTHEL G, KALLSTROM G, WARFIELD KL, SWENSON DL, NELLE T, IVERSEN PL, BAVARI S, AMAN MJ. Involvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction[J]. The Journal of Infectious Diseases, 2007, 196(supplement_2):S264-S270.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

代军,仇旭升,丁铲. 病毒劫持ESCRT系统促进自身复制的研究进展[J]. 生物工程学报, 2023, 39(10): 3948-3965

复制
分享
文章指标
  • 点击次数:367
  • 下载次数: 1331
  • HTML阅读次数: 940
  • 引用次数: 0
历史
  • 收稿日期:2023-04-26
  • 录用日期:2023-07-07
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6344777位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司