低氧对脂肪细胞发育及脂质代谢调控研究进展
作者:
基金项目:

国家自然科学基金(32172725);国家重点研发计划(2021YFC2101403)


Advances in regulation of hypoxia on adipocyte development and lipid metabolism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    脂肪细胞的生长、分化与增殖贯穿整个生命过程,脂肪细胞中脂质代谢紊乱影响脂肪组织免疫和全身能量代谢。脂质代谢参与调控机体多种疾病的发生与发展,如高脂血症、非酒精性脂肪肝病、糖尿病和癌症等,对人和动物健康具有重大威胁。低氧诱导因子(hypoxia inducible factor,HIF)是介导机体组织器官中氧感受器的主要转录因子,HIF可调控脂质合成、脂肪酸代谢和脂滴形成并诱导疾病发生。但由于低氧程度、时间和作用方式的不同,对机体脂肪细胞发育和脂质代谢产生有害或有益的影响还无从定论。本文总结了低氧介导转录因子的调控作用以及对脂肪细胞发育和脂质代谢调控的研究进展,旨在揭示低氧诱导脂肪细胞代谢途径变化的潜在机制。

    Abstract:

    The growth, differentiation and proliferation of adipose cells run through the whole life process. Dysregulation of lipid metabolism in adipose cells affects adipose tissue immunity and systemic energy metabolism. Increasingly available data suggest that lipid metabolism is involved in regulating the occurrence and development of various diseases, such as hyperlipidemia, nonalcoholic fatty liver disease, diabetes and cancer, which pose a major threat to human and animal health. Hypoxia inducible factor (HIF) is a major transcription factor mediating oxygen receptors in tissues and organs. HIF can induce disease by regulating lipid synthesis, fatty acid metabolism and lipid droplet formation. However, due to the difference of hypoxia degree, time and mode of action, there is no conclusive conclusion whether it has harmful or beneficial effects on the development of adipocytes and lipid metabolism. This article summarizes the regulation of hypoxia stress mediated transcription regulators and regulation of adipocyte development and lipid metabolism, aiming to reveal the potential mechanism of hypoxia induced changes in adipocyte metabolism pathways.

    参考文献
    [1] HAN HS, CHUNG KS, SHIN YK, LEE SH, LEE KT. Standardized Hydrangea serrata (thunb.) Ser. extract ameliorates obesity in db/db mice[J]. Nutrients, 2021, 13(10):3624.
    [2] XIE H, SIMON M. Oxygen availability and metabolic reprogramming in cancer[J]. The Journal of Biological Chemistry, 2017, 292:16825-16832.
    [3] SUN RC, DENKO NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth[J]. Cell Metabolism, 2014, 19(2):285-292.
    [4] HE Q, GAO ZG, YIN J, ZHANG J, YUN Z, YE JP. Regulation of HIF-1α activity in adipose tissue by obesity-associated factors:adipogenesis, insulin, and hypoxia[J]. American Journal of Physiology-Endocrinology and Metabolism, 2011, 300(5):E877-E885.
    [5] HALBERG N, KHAN T, TRUJILLO ME, WERNSTEDT-ASTERHOLM I, ATTIE AD, SHERWANI S, WANG ZV, LANDSKRONER-EIGER S, DINEEN S, MAGALANG UJ, BREKKEN RA, SCHERER PE. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue[J]. Molecular and Cellular Biology, 2009, 29(16):4467-4483.
    [6] HAN JS, LEE JH, KONG J, JI Y, KIM J, CHOE SS, KIM JB. Hypoxia restrains lipid utilization via protein kinase A and adipose triglyceride lipase downregulation through hypoxia-inducible factor[J]. Molecular and Cellular Biology, 2019, 39(2):e00390-18.
    [7] 孙鹏飞. 牦牛乳开发利用现状及产业化发展建议[J]. 中国畜牧业, 2021, 582(15):48. SUN PF. Present situation of yak milk development and utilization and suggestions for industrialization development[J]. China Animal Industry, 2021(15):48(in Chinese).
    [8] KAJIMURA S, SAITO M. A new era in brown adipose tissue biology:molecular control of brown fat development and energy homeostasis[J]. Annual Review of Physiology, 2014, 76:225-249.
    [9] CHEN SZ, LIU XX, PENG C, TAN C, SUN HL, LIU H, ZHANG Y, WU P, CUI C, LIU CC, YANG D, LI ZQ, LU JX, GUAN J, KE XS, WANG RX, BO XH, XU XJ, HAN JF, LIU JL. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity[J]. Cell Metabolism, 2021, 33(3):565-580.e7.
    [10] SEALE P, BJORK B, YANG WL, KAJIMURA S, CHIN S, KUANG SH, SCIMÈ A, DEVARAKONDA S, CONROE HM, ERDJUMENT-BROMAGE H, TEMPST P, RUDNICKI MA, BEIER DR, SPIEGELMAN BM. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 2008, 454(7207):961-967.
    [11] SANCHEZ-GURMACHES J, GUERTIN DA. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed[J]. Nature Communications, 2014, 5:4099.
    [12] KITASE Y, VALLEJO JA, GUTHEIL W, VEMULA H, JÄHN K, YI JX, ZHOU JS, BROTTO M, BONEWALD LF. β-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor[J]. Cell Reports, 2018, 22(6):1531-1544.
    [13] BOWERS RR, KIM JW, OTTO TC, DANIEL LANE M. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation:role of the BMP-4 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35):13022-13027.
    [14] GUPTA RK, ARANY Z, SEALE P, MEPANI RJ, YE L, CONROE HM, ROBY YA, KULAGA H, REED RR, SPIEGELMAN BM. Transcriptional control of preadipocyte determination by Zfp423[J]. Nature, 2010, 464(7288):619-623.
    [15] CRISTANCHO AG, SCHUPP M, LEFTEROVA MI, CAO SY, COHEN DM, CHEN CS, STEGER DJ, LAZAR MA. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39):16271-16276.
    [16] DANG TN, TAYLOR JL, KILROY G, YU YM, BURK DH, ELIZABETH FLOYD Z. SIAH2 is expressed in adipocyte precursor cells and interacts with EBF1 and ZFP521 to promote adipogenesis[J]. Obesity, 2021, 29(1):98-107.
    [17] STEFKOVICH M, TRAYNOR S, CHENG L, MERRICK D, SEALE P. Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis[J]. Molecular Metabolism, 2021, 54:101357.
    [18] ZHANG KX, YANG XD, ZHAO Q, LI ZG, FU FM, ZHANG H, ZHENG MY, ZHANG SW. Molecular mechanism of stem cell differentiation into adipocytes and adipocyte differentiation of malignant tumor[J]. Stem Cells International, 2020, 2020:1-16.
    [19] ZHANG YY, LI X, QIAN SW, GUO L, HUANG HY, HE Q, LIU Y, MA CG, TANG QQ. Transcriptional activation of histone H4 by C/EBP β during the mitotic clonal expansion of 3T3-L1 adipocyte differentiation[J]. Molecular Biology of the Cell, 2011, 22(13):2165-2174.
    [20] EVANS RM, BARISH GD, WANG YX. PPARs and the complex journey to obesity[J]. Nature Medicine, 2004, 10(4):355-361.
    [21] SHIN MR, SHIN SH, ROH SS. Diospyros kaki and Citrus unshiu mixture improves disorders of lipid metabolism in nonalcoholic fatty liver disease[J]. Canadian Journal of Gastroenterology and Hepatology, 2020, 2020:1-12.
    [22] HUANG Y, ZHAO CX, KONG YZ, TAN PP, LIU SQ, LIU YQ, ZENG FY, YUAN Y, ZHAO BY, WANG JG. Elucidation of the mechanism of NEFA-induced PERK-eIF2α signaling pathway regulation of lipid metabolism in bovine hepatocytes[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2021, 211:105893.
    [23] WU LP, ZHANG SL, ZHANG Q, WEI SF, WANG GZ, LUO P. The molecular mechanism of hepatic lipid metabolism disorder caused by NaAsO2 through regulating the ERK/PPAR signaling pathway[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022:1-13.
    [24] LIU L, XING DM, DU XL, PENG T, McFADDEN JW, WEN LX, LEI HY, DONG W, LIU GW, WANG Z, SU JM, HE JH, LI XW. Sirtuin 3 improves fatty acid metabolism in response to high nonesterified fatty acids in calf hepatocytes by modulating gene expression[J]. Journal of Dairy Science, 2020, 103(7):6557-6568.
    [25] GUI LS, WU H, RAZA SHA, SCHREURS NM, ALI SHAH M. The effect of haplotypes in the promoter region of SIRT4 gene on the ultrasound traits in Qinchuan cattle[J]. Tropical Animal Health and Production, 2019, 51(7):1877-1882.
    [26] JUNJVLIEKE Z, MEI CG, KHAN R, ZHANG WZ, HONG JY, WANG L, LI SJ, ZAN LS. Transcriptional regulation of bovine elongation of very long chain fatty acids protein 6 in lipid metabolism and adipocyte proliferation[J]. Journal of Cellular Biochemistry, 2019, 120(8):13932-13943.
    [27] FU YY, HU BH, CHEN KL, LI HX. Chemerin induces lipolysis through ERK1/2 pathway in intramuscular mature adipocytes of dairy bull calves[J]. Journal of Cellular Biochemistry, 2019, 120(2):1122-1132.
    [28] TAFANI M, SANSONE L, LIMANA F, ARCANGELI T, de SANTIS E, POLESE M, FINI M, RUSSO MA. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression[J]. Oxidative Medicine and Cellular Longevity, 2016, 2016:1-18.
    [29] ZHAO P, HAN SN, ARUMUGAM S, YOUSAF MN, QIN YQ, JIANG JX, TOROK NJ, CHEN YL, MANKASH MS, LIU JB, LI JS, IWAKIRI Y, OUYANG X. Digoxin improves steatohepatitis with differential involvement of liver cell subsets in mice through inhibition of PKM2 transactivation[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2019, 317(4):G387-G397.
    [30] HOLZNER LMW, MURRAY AJ. Hypoxia-inducible factors as key players in the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis[J]. Frontiers in Medicine, 2021, 8:753268.
    [31] PENG S, ZHANG J, TAN X, HUANG Y, XU J, SILK N, ZHANG D, LIU Q, JIANG J. The VHL/HIF axis in the development and treatment of pheochromocytoma/paraganglioma[J]. Frontiers in Endocrinology, 2020, 11:586857.
    [32] MYLONIS I, SIMOS G, PARASKEVA E. Hypoxia-inducible factors and the regulation of lipid metabolism[J]. Cells, 2019, 8(3):214.
    [33] VOLKOVA YL, PICKEL C, JUCHT AE, WENGER RH, SCHOLZ CC. The asparagine hydroxylase FIH:a unique oxygen sensor[J]. Antioxidants & Redox Signaling, 2022, 37(13/14/15):913-935.
    [34] FUHRMANN DC, MONDORF A, BEIFUß J, JUNG M, BRÜNE B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis[J]. Redox Biology, 2020, 36:101670.
    [35] LIU QL, TONG DL, LIU GL, YI YT, ZHANG DZ, ZHANG J, ZHANG Y, HUANG ZM, LI YM, CHEN RR, GUAN YF, YI X, JIANG J. HIF2Agermline-mutation-induced polycythemia in a patient with VHL-associated renal-cell carcinoma[J]. Cancer Biology & Therapy, 2017, 18(12):944-947.
    [36] ZHENG F, CHEN JN, ZHANG XQ, WANG ZF, CHEN JW, LIN XR, HUANG HY, FU WK, LIANG J, WU W, LI B, YAO HR, HU H, SONG EW. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis[J]. Nature Communications, 2021, 12:1341.
    [37] TSAO CC, BAUMANN J, HUANG SF, KINDLER D, SCHROETERA, KACHAPPILLY N, GASSMANN M, RUDIN M, OGUNSHOLA OO. Pericyte hypoxia-inducible factor-1(HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome[J]. Angiogenesis, 2021, 24(4):823-842.
    [38] SHVETSOVA AN, MENNERICH D, KERÄTÄR JM, HILTUNEN JK, KIETZMANN T. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription[J]. Redox Biology, 2017, 12:1052-1061.
    [39] WANG J, GAO T, WANG F, XUE J, YE H, XIE M. Luteolin improves myocardial cell glucolipid metabolism by inhibiting hypoxia inducible factor-1α expression in angiotensin II/hypoxia-induced hypertrophic H9c2 cells[J]. Nutrition Research, 2019, 65:63-70.
    [40] LIU LL, LI DH, HE YL, ZHOU YZ, GONG SH, WU LY, ZHAO YQ, HUANG X, ZHAO T, XU L, WU KW, LI MG, ZHU LL, FAN M. MiR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha[J]. Molecular Medicine, 2017, 23(1):258-271.
    [41] HU FL, LIU HJ, XU LL, LI YN, LIU X, SHI LJ, SU Y, QIU XY, ZHANG X, YANG YQ, ZHANG J, LI ZG. Hypoxia-inducible factor-1α perpetuates synovial fibroblast interactions with T cells and B cells in rheumatoid arthritis[J]. European Journal of Immunology, 2016, 46(3):742-751.
    [42] HU CJ, POTH JM, ZHANG H, FLOCKTON A, LAUX A, KUMAR S, MCKEON B, MOURADIAN G, LI M, RIDDLE S, PUGLIESE SC, BROWN RD, WALLACE EM, GRAHAM BB, FRID MG, STENMARK KR. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension[J]. European Respiratory Journal, 2019, 54(6):1900378.
    [43] LI J, PAN XH, PAN GH, SONG ZJ, HE Y, ZHANG SS, YE XR, YANG X, XIE EJ, WANG XH, MAI XD, YIN XJ, TANG BY, SHU X, CHEN PY, DAI XS, TIAN Y, YAO LH, HAN ML, XU GH, et al. Transferrin receptor 1 regulates thermogenic capacity and cell fate in brown/beige adipocytes[J]. Advanced Science, 2020, 7(12):1903366.
    [44] WANG PZ, ZHU PP, YU CS, WU J. The proliferation and stemness of peripheral blood-derived mesenchymal stromal cells were enhanced by hypoxia[J]. Frontiers in Endocrinology, 2022, 13:873662.
    [45] HWANG OK, NOH YW, HONG JT, LEE JW. Hypoxia pretreatment promotes chondrocyte differentiation of human adipose-derived stem cells via vascular endothelial growth factor[J]. Tissue Engineering and Regenerative Medicine, 2020, 17(3):335-350.
    [46] JIANG C, SUN J, DAI YF, CAO PF, ZHANG LY, PENG SP, ZHOU YH, LI GY, TANG JQ, XIANG JJ. HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia[J]. Stem Cell Research & Therapy, 2015, 6(1):1-14.
    [47] WU Z, LIU D, LIU Y, XUE N, YAN C, SU Y. Effects of Astragalus polysaccharides on adipogenic differentiation of bone marrow mesenchymal stem cells in low oxygen environment[J]. Chinese Journal of Biotechnology, 2017, 33(11):1850-1858.
    [48] HUNG SP, HO JH, SHIH YR, LO T, LEE OK. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells[J]. Journal of Orthopaedic Research, 2012, 30(2):260-266.
    [49] YIN J, GAO ZG, HE Q, ZHOU DQ, GUO ZK, YE JP. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue[J]. American Journal of Physiology-Endocrinology and Metabolism, 2009, 296(2):E333-E342.
    [50] HASHIMOTO T, YOKOKAWA T, ENDO Y, IWANAKA N, HIGASHIDA K, TAGUCHI S. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes[J]. Biochemical and Biophysical Research Communications, 2013, 440(1):43-49.
    [51] KRISHNAN J, SUTER M, WINDAK R, KREBS T, FELLEY A, MONTESSUIT C, TOKARSKA-SCHLATTNER M, AASUM E, BOGDANOVA A, PERRIARD E, PERRIARD JC, LARSEN T, PEDRAZZINI T, KREK W. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy[J]. Cell Metabolism, 2009, 9(6):512-524.
    [52] JIANG CT, QU AJ, MATSUBARA T, CHANTURIYA T, JOU W, GAVRILOVA O, SHAH YM, GONZALEZ FJ. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice[J]. Diabetes, 2011, 60(10):2484-2495.
    [53] SHAO W, HWANG J, LIU C, MUKHOPADHYAY D, ZHAO S, SHEN MC, SELEN ES, WOLFGANG MJ, FARBER SA, ESPENSHADE PJ. Serum lipoprotein-derived fatty acids regulate hypoxia-inducible factor[J]. Journal of Biological Chemistry, 2020, 295(52):18284-18300.
    [54] MOROTTI M, BRIDGES E, VALLI A, CHOUDHRY H, SHELDON H, WIGFIELD S, GRAY N, ZOIS CE, GRIMM F, JONES D, TEOH EJ, CHENG WC, LORD S, ANASTASIOU D, HAIDER S, McINTYRE A, GOBERDHAN DCI, BUFFA F, HARRIS AL. Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25):12452-12461.
    [55] LEE P, CHANDEL NS, SIMON MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J]. Nature Reviews Molecular Cell Biology, 2020, 21(5):268-283.
    [56] DU W, ZHANG L, BRETT-MORRIS A, AGUILA B, KERNER J, HOPPEL CL, PUCHOWICZ M, SERRA D, HERRERO L, RINI BI, CAMPBELL S, WELFORD SM. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism[J]. Nature Communactions, 2017, 8(1):1769.
    [57] SEO J, JEONG DW, PARK JW, LEE KW, FUKUDA J, CHUN YS. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells[J]. Communications Biology, 2020, 3:638.
    [58] SHEN GM, ZHAO YZ, CHEN MT, ZHANG FL, LIU XL, WANG Y, LIU CZ, YU J, ZHANG JW. Hypoxia-inducible factor-1(HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia[J]. Biochemical Journal, 2012, 441(2):675-683.
    [59] LI YJ, KASIM V, YAN XS, LI L, MELIALA ITS, HUANG C, LI ZL, LEI K, SONG GB, ZHENG XD, WU SR. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation[J]. Theranostics, 2019, 9(25):7599-7615.
    [60] QU AJ, TAYLOR M, XUE X, MATSUBARA T, METZGER D, CHAMBON P, GONZALEZ FJ, SHAH YM. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis[J]. Hepatology, 2011, 54(2):472-483.
    [61] CHEN JD, CHEN JX, FU HR, LI Y, WANG LL, LUO SK, LU HY. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway[J]. American Journal of Physiology-Endocrinology and Metabolism, 2019, 317(4):E710-E722.
    [62] MOOLI RGR, RODRIGUEZ J, TAKAHASHI S, SOLANKI S, GONZALEZ FJ, RAMAKRISHNAN SK, SHAH YM. Hypoxia via ERK signaling inhibits hepatic PPARα to promote fatty liver[J]. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12(2):585-597.
    [63] QIU B, ACKERMAN D, SANCHEZ DJ, LI B, OCHOCKI JD, GRAZIOLI A, BOBROVNIKOVA-MARJON E, ALAN DIEHL J, KEITH B, SIMON MC. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma[J]. Cancer Discovery, 2015, 5(6):652-667.
    [64] CHEN JX, CHEN JD, HUANG JX, LI ZY, GONG YH, ZOU BJ, LIU XL, DING L, LI PP, ZHU ZQ, ZHANG BM, GUO H, CAI CN, LI J. HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway[J]. Aging, 2019, 11(23):10839-10860.
    [65] QIN L, WEN SL, JING R, SONG Z, XIANG Y, QIN XQ. The effect of intermittent hypoxia on bodyweight, serum glucose and cholesterol in obesity mice[J]. Pakistan Journal of Biological Sciences, 2008, 11(6):869-875.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘媛,李惠侠. 低氧对脂肪细胞发育及脂质代谢调控研究进展[J]. 生物工程学报, 2023, 39(10): 3925-3935

复制
分享
文章指标
  • 点击次数:714
  • 下载次数: 1708
  • HTML阅读次数: 1392
  • 引用次数: 0
历史
  • 收稿日期:2022-11-26
  • 录用日期:2023-03-28
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6430602位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司