多酶级联反应合成能够促进肠道益生菌生长的纤维寡糖
作者:
基金项目:

国家重点研发计划(2017YFD0502102-3)


Synthesis of cello-oligosaccharides which promotes the growth of intestinal probiotics by multi-enzyme cascade reaction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    聚合度2–6的可溶性纤维寡糖是一种具有多种生物功能的低聚糖,它能够促进双歧杆菌(Bifidobacteria)、副干酪乳杆菌(Lactobacillus paracei)等肠道益生菌的增殖,因此对人体肠道微生态具有调节作用。本研究通过在大肠杆菌中表达纤维寡糖磷酸化酶(cellodextrin phosphorylase,CDP),构建Cc 01菌株,并与之前构建的COS 01菌株联合使用,建立了基于COS 01、Cc 01的三酶级联反应催化底物葡萄糖和蔗糖合成纤维寡糖反应体系。经过优化后,最终可溶性纤维寡糖的产量达到97 g/L,纯度约为97%,其中含有纤维二糖(16.8 wt%)、纤维三糖(49.8 wt%)、纤维四糖(16.4 wt%)、纤维五糖(11.5 wt%)和纤维六糖(5.5 wt%)。在纤维寡糖对益生菌株生长促进作用的测试中,以菊粉、低聚木糖、低聚果糖为基准,干酪乳杆菌(WSH 004)、副干酪乳杆菌(WSH 005)以及嗜酸乳杆菌(WSH 006)利用纤维寡糖(聚合度2–6)为碳源进行生长后,益生菌的生物量(OD600)相比对照增加约2倍。该研究证明了三酶级联反应能够高效合成纤维寡糖,并表明聚合度2–6的纤维寡糖是一类具有促进肠道微生物增殖的功能性碳水化合物。

    Abstract:

    Soluble cello-oligosaccharide with 2–6 oligosaccharide units is a kind of oligosaccharide with various biological functions, which can promote the proliferation of intestinal probiotics such as Bifidobacteria and Lactobacillus paracei. Therefore, it has a regulatory effect on human intestinal microbiota. In this study, a Cc 01 strain was constructed by expressing cellodextrin phosphorylase (CDP) in Escherichia coli. By combining with a previously constructed COS 01 strain, a three-enzyme cascade reaction system based on strains COS 01 and Cc 01 was developed, which can convert glucose and sucrose into cello-oligosaccharide. After optimization, the final titer of soluble cello-oligosaccharides with 2–6 oligosaccharide units reached 97 g/L, with a purity of about 97%. It contained cellobiose (16.8 wt%), cellotriose (49.8 wt%), cellotetrose (16.4 wt%), cellopentaose (11.5 wt%) and cellohexose (5.5 wt%). When using inulin, xylo-oligosaccharide and fructooligosaccharide as the control substrate, the biomass (OD600) of Lactobacillus casei (WSH 004), Lactobacillus paracei (WSH 005) and Lactobacillus acidophilus (WSH 006) on cello-oligosaccharides was about 2 folds higher than that of the control. This study demonstrated the efficient synthesis of cello-oligosaccharides by a three-enzyme cascade reaction and demonstrated that the synthesized cello-oligosaccharides was capable of promoting intestinal microbial proliferation.

    参考文献
    [1] 王朋凯, 张雁, 池建伟, 黄菲, 魏振承. 纤维低聚糖的研究进展[J]. 保鲜与加工, 2017, 17(6):136-141. WANG PK, ZHANG Y, CHI JW, HUANG F, WEI ZC. Investigation progress of cello-oligosaccharides[J]. Storage and Process, 2017, 17(6):136-141(in Chinese).
    [2] LEBLANC JG, CHAIN F, MARTÍN R, BERMÚDEZ-HUMARÁN LG, COURAU S, LANGELLA P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria[J]. Microbial Cell Factories, 2017, 16(1):1-10.
    [3] MUSSATTO SI, MANCILHA IM. Non-digestible oligosaccharides:a review[J]. Carbohydrate Polymers, 2007, 68(3):587-597.
    [4] TESTER RF, AL-GHAZZEWI FH. Role of prebiotics and probiotics in oral health[J]. Nutrition & Food Science, 2018, 48(1):16-29.
    [5] WHISNER CM, CASTILLO LF. Prebiotics, bone and mineral metabolism[J]. Calcified Tissue International, 2018, 102(4):443-479.
    [6] UBIPARIP Z, MORENO DS, BEERENS K, DESMET T. Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose[J]. Applied Microbiology and Biotechnology, 2020, 104(19):8327-8337.
    [7] VIEIRA AT, TEIXEIRA MM, MARTINS FS. The role of probiotics and prebiotics in inducing gut immunity[J]. Frontiers in Immunology, 2013, 4:445.
    [8] 沈雪亮. 功能性纤维低聚糖的研究现状及发展前景[J]. 食品与发酵工业, 2009, 35(8):100-104. SHEN XL. Current research and advance prospect of functional cello-oligosaccharide[J]. Food and Fermentation Industries, 2009, 35(8):100-104(in Chinese).
    [9] MANO MCR, NERI-NUMA IA, SILVA JB, PAULINO BN, PESSOA MG, PASTORE GM. Oligosaccharide biotechnology:an approach of prebiotic revolution on the industry[J]. Applied Microbiology and Biotechnology, 2018, 102(1):17-37.
    [10] KOTHARI D, PATEL S, GOYAL A. Therapeutic spectrum of nondigestible oligosaccharides:overview of current state and prospect[J]. Journal of Food Science, 2014, 79(8):R1491-R1498.
    [11] BAI SW, YANG LZ, WANG HL, YANG C, HOU XC, GAO JJ, ZHANG ZM. Cellobiose phosphorylase from Caldicellulosiruptor bescii catalyzes reversible phosphorolysis via different kinetic mechanisms[J]. Scientific Reports, 2022, 12:3978.
    [12] HE XX, LU W, SUN CX, KHALESI H, MATA A, ANDALEEB R, FANG YP. Cellulose and cellulose derivatives:different colloidal states and food-related applications[J]. Carbohydrate Polymers, 2021, 255:117334.
    [13] DEBIAGI F, MADEIRA TB, NIXDORF SL, MALI S. Pretreatment efficiency using autoclave high-pressure steam and ultrasonication in sugar production from liquid hydrolysates and access to the residual solid fractions of wheat bran and oat hulls[J]. Applied Biochemistry and Biotechnology, 2020, 190(1):166-181.
    [14] BARBOSA FC, SILVELLO MA, GOLDBECK R. Cellulase and oxidative enzymes:new approaches, challenges and perspectives on cellulose degradation for bioethanol production[J]. Biotechnology Letters, 2020, 42(6):875-884.
    [15] PARISUTHAM V, CHANDRAN SP, MUKHOPADHYAY A, LEE SK, KEASLING JD. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries[J]. Bioresource Technology, 2017, 239:496-506.
    [16] REICHENBECHER M, LOTTSPEICH F, BRONNENMEIER K. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium[J]. European Journal of Biochemistry, 1997, 247(1):262-267.
    [17] DEVENDRAN S, ABDEL-HAMID AM, EVANS AF, IAKIVIAK M, KWON IH, MACKIE RI, CANN I. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides[J]. Scientific Reports, 2016, 6:35342.
    [18] KITAOKA M, SASAKI T, TANIGUCHI H. Phosphorolytic reaction of Cellvibrio gilvus cellobiose phosphorylase[J]. Bioscience, Biotechnology, and Biochemistry, 1992, 56(4):652-655.
    [19] TIAN CG, BEESON WT, IAVARONE AT, SUN JP, MARLETTA MA, CATE JHD, GLASS NL. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52):22157-22162.
    [20] SANTOS SALGADO JC, MELEIRO LP, CARLI S, WARD RJ. Glucose tolerant and glucose stimulated β-glucosidases-a review[J]. Bioresource Technology, 2018, 267:704-713.
    [21] NAKAI H, ABOU HACHEM M, PETERSEN BO, WESTPHAL Y, MANNERSTEDT K, BAUMANN MJ, DILOKPIMOL A, SCHOLS HA, DUUS JØ, SVENSSON B. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum[J]. Biochimie, 2010, 92(12):1818-1826.
    [22] ZHONG C, DUIĆ B, BOLIVAR JM, NIDETZKY B. Three-enzyme phosphorylase cascade immobilized on solid support for biocatalytic synthesis of cello-oligosaccharides[J]. ChemCatChem, 2020, 12(5):1350-1358.
    [23] 刘伟丰, 陶勇. 蛋白质预算:合成生物学的成本标尺[J]. 生物工程学报, 2013, 29(8):1123-1132. LIU WF, TAO Y. Protein budget:cost estimating criteria for synthetic biology[J]. Chinese Journal of Biotechnology, 2013, 29(8):1123-1132(in Chinese).
    [24] WANG L, ZHENG P, HU MR, TAO Y. Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production[J]. Journal of Industrial Microbiology and Biotechnology, 2022, 49(3):kuac008.
    [25] CERDOBBEL A, de WINTER K, AERTS D, KUIPERS R, JOOSTEN HJ, SOETAERT W, DESMET T. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis[J]. Protein Engineering, Design and Selection, 2011, 24(11):829-834.
    [26] WU YY, MAO GT, FAN HY, SONG AD, ZHANG YH P, CHEN HG. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity[J]. Scientific Reports, 2017, 7:4849.
    [27] ZHONG C, LULEY-GOEDL C, NIDETZKY B. Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase[J]. Biotechnology and Bioengineering, 2019, 116(9):2146-2155.
    [28] XU YM, WU YK, LV XQ, SUN GY, ZHANG HZ, CHEN TC, DU GC, LI JH, LIU L. Design and construction of novel biocatalyst for bioprocessing:recent advances and future outlook[J]. Bioresource Technology, 2021, 332:125071.
    [29] KATANO H, NOBA S, SATO K, KIMOTO H. Solubility-based separation and purification of long-chain chitin oligosaccharides with an organic-water mixed solvent[J]. Analytical Sciences, 2017, 33(5):639-642.
    [30] DESVAUX M. Unravelling carbon metabolism in anaerobic cellulolytic bacteria[J]. Biotechnology Progress, 2006, 22(5):1229-1238.
    [31] ZARTL B, SILBERBAUER K, LOEPPERT R, VIERNSTEIN H, PRAZNIK W, MUELLER M. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics[J]. Food & Function, 2018, 9(3):1638-1646.
    [32] ABOULOIFA H, KHODAEI N, ROKNI Y, KARBOUNE S, BRASCA M, D'HALLEWIN G, BEN SALAH R, SAALAOUI E, ASEHRAOU A. The prebiotics (fructo-oligosaccharides and xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive[J]. World Journal of Microbiology and Biotechnology, 2020, 36(12):1-12.
    [33] ABOU HACHEM M, ANDERSEN JM, BARRANGOU R, MØLLER MS, FREDSLUND F, MAJUMDER A, EJBY M, LAHTINEN SJ, JACOBSEN S, LO LEGGIO L, GOH YJ, KLAENHAMMER TR, SVENSSON B. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria[J]. Biocatalysis and Biotransformation, 2013, 31(4):226-235.
    [34] GOH YJ, KLAENHAMMER TR. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes[J]. Annual Review of Food Science and Technology, 2015, 6:137-156.
    [35] TASSE L, BERCOVICI J, PIZZUT-SERIN S, ROBE P, TAP J, KLOPP C, CANTAREL BL, COUTINHO PM, HENRISSAT B, LECLERC M, DORÉ J, MONSAN P, REMAUD-SIMEON M, POTOCKI-VERONESE G. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes[J]. Genome Research, 2010, 20(11):1605-1612.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑棚,王雷,胡美荣,魏华,陶勇. 多酶级联反应合成能够促进肠道益生菌生长的纤维寡糖[J]. 生物工程学报, 2023, 39(8): 3406-3420

复制
分享
文章指标
  • 点击次数:304
  • 下载次数: 1072
  • HTML阅读次数: 853
  • 引用次数: 0
历史
  • 收稿日期:2022-11-13
  • 最后修改日期:2023-02-02
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6036379位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司