短须嗜热单孢菌聚羟基脂肪酸酯解聚酶的表达、热稳定性改造及在PHB降解中的应用
作者:
基金项目:

国家重点研发计划(2019YFA0706900);江苏省重点研发计划(BE2021625);江苏省政策引导类计划(BZ2020010)


Expression, thermal stability modification and application in PHB degradation of polyhydroxyalkanoate depolymerase from Thermomonospora umbrina
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    聚羟基脂肪酸酯解聚酶(polyhydroxyalkanoate depolymerase,PHAD)可用于聚羟基脂肪酸酯(polyhydroxyalkanoate,PHA)的降解回收,为开发热稳定性好的PHAD,本研究在大肠杆菌(Escherichia coli) BL21(DE3)中成功表达了来自短须嗜热单孢菌(Thermomonospora umbrina)的PHA解聚酶(TumPHAD),并通过二硫键理性设计获得了热稳定性提升的突变体A190C/V240C,其最适温度为60℃,比野生型提高20℃,50℃半衰期为7 h,是野生型酶的21倍。将突变体A190C/V240C用于典型PHA之一的聚羟基丁酸酯(polyhydroxybutyrate,PHB)降解,在50℃条件下,PHB的2 h和12 h降解率较野生型分别提高了2.1倍和3.8倍。本研究获得的TumPHAD突变体A190C/V240C具有耐高温、热稳定性好和PHB降解能力强的特点,对PHB的降解回收具有重要意义。

    Abstract:

    Polyhydroxyalkanoate depolymerase (PHAD) can be used for the degradation and recovery of polyhydroxyalkanoate (PHA). In order to develop a PHAD with good stability under high temperature, PHAD from Thermomonospora umbrina (TumPHAD) was heterelogously expressed in Escherichia coli BL21(DE3). At the same time, a mutant A190C/V240C with enhanced stability was obtained via rational design of disulfide bonds. Characterization of enzymatic properties showed that the mutant A190C/V240C had an optimum temperature of 60 ℃, which was 20 ℃ higher than that of the wild type. The half-life at 50 ℃ was 7 hours, at 50 ℃which was 21 times longer than that of the wild type. The mutant A190C/V240C was used for the degradation of polyhydroxybutyrate (PHB), one of the typical PHA. At 50 ℃, the degradation rate of PHB being treated for 2 hours and 12 hours was 2.1 times and 3.8 times higher than that of the wild type, respectively. The TumPHAD mutant A190C/V240C obtained in this study shows tolerance to high temperature resistance, good thermal stability and strong PHB degradation ability, which may facilitate the degradation and recovery of PHB.

    参考文献
    [1] STEINBUCHEL A. Perspectives for biotechnological production and utilization of biopolymers:metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example[J]. Macromol Biosci, 2001, 1(1):1-24.
    [2] REINECKE F, STEINBÜCHEL A. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers[J]. Journal of Molecular Microbiology and Biotechnology, 2009, 16(1/2):91-108.
    [3] KIM MN, LEE BY, LEE IM, LEE HS, YOON JS. Toxicity and biodegradation of products from polyester hydrolysis[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2001, 36(4):447-463.
    [4] SHIVAKUMAR S. Poly-β-hydroxybutyrate (PHB) depolymerase from Fusarium solani Thom[J]. Journal of Chemistry, 2013, 2013:1-9.
    [5] ROOHI, ZAHEER MR, KUDDUS M. PHB (poly-β-hydroxybutyrate) and its enzymatic degradation[J]. Polymers for Advanced Technologies, 2018, 29(1):30-40.
    [6] AKHLAQ S, SINGH D, MITTAL N, SRIVASTAVA G, SIDDIQUI S, AHMAD FARIDI S, SIDDIQUI MH. Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods:a short review[J]. Polymer Bulletin, 2022, 5(5):1-33.
    [7] MCADAM B, FOURNET MB, MCDONALD P, MOJICEVIC M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics[J]. Polymers, 2020, 12(12):2908.
    [8] MARTA S, JOANA G, HELMUT K, MARTIN M, SERRA JUAN L, LLAMA MARÍA J. Polyester hydrolytic and synthetic activity catalyzed by the medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces venezuelae SO1[J]. Applied Microbiology and Biotechnology, 2013, 97(1):211-22.
    [9] LI F, YU D, LIN XM, LIU DB, XIA HM, CHEN S. Biodegradation of poly(ε-caprolactone) (PCL) by a new Penicillium oxalicum strain DSYD05-1[J]. World Journal of Microbiology & Biotechnology, 2012, 28(10):2929-2935.
    [10] MARTÍNEZ V, de SANTOS PG, GARCÍA-HIDALGO J, HORMIGO D, PRIETO MA, ARROYO M, dela MATA I. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693:a promising biocatalyst for the efficient degradation of natural and functionalized mcl-PHAs[J]. Applied Microbiology and Biotechnology, 2015, 99:9605-9615.
    [11] GARCÍA-HIDALGO J, HORMIGO D, ARROYO M, dela MATA I. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus:PHB copolymers degradation in acidic conditions[J]. PLoS One, 2013, 8(8):e71699.
    [12] SHINOZAKI Y, MORITA T, CAO XH, YOSHIDA S, KOITABASHI M, WATANABE T, SUZUKI K, SAMESHIMA-YAMASHITA Y, NAKAJIMA-KAMBE T, FUJII T, KITAMOTO HK. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica:cloning, sequencing, and characterization[J]. Applied Microbiology and Biotechnology, 2013, 97(7):2951-2959.
    [13] IYER S, SHAH R, SHARMA A. Purification of Aspergillus fumigatus (Pdf1) poly(beta-hydroxybutyrate) (PHB) depolymerase using a new, single-step substrate affinity chromatography method:characterization of the PHB depolymerase exhibiting novel self-aggregation behavior[J]. Journal of Polymers and the Environment, 2000, 8(4):197-203.
    [14] HAN JS, KIM MN. Purification and characterization of extracellular poly(3-hydroxybutyrate) depolymerase from Penicillium simplicissimum LAR13[J]. Journal of Microbiology, 2002, 40:20-25.
    [15] JUNG KH, DO YOUNG K, SIK NJ, SOOK BK, HA RY. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72[J]. Antonie Van Leeuwenhoek, 2003, 83(2):183-9.
    [16] HANDRICK R, REINHARDT S, KIMMIG P. The "intracellular" poly(3-hydroxybutyrate) (PHB) depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases[J]. Journal of Bacteriology, 2004, 186(21):7243-7253.
    [17] LI F, GUO ZQ, WANG N, XIA HM, LIU DB, CHEN S. Biodegradation of poly(3-hydroxybutyrate)-derived polymers with different 4-hydroxybutyrate fractions by a novel depolymerase from Paecilomyces sp. 1407[J]. Polymer Degradation and Stability, 2019, 159:107-115.
    相似文献
    引证文献
引用本文

李志刚,陈世恒,孔德民,陈晟,王蕾,吴敬. 短须嗜热单孢菌聚羟基脂肪酸酯解聚酶的表达、热稳定性改造及在PHB降解中的应用[J]. 生物工程学报, 2023, 39(8): 3351-3363

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-12
  • 最后修改日期:2023-05-04
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司