结构指导的玉米赤霉烯酮水解酶的热稳定性改造
作者:
基金项目:

国家自然科学基金(22078129);江苏省研究生科研与实践创新计划项目(KYCX22_2420)


Structure-guided engineering for improving the thermal stability of zearalenone hydrolase
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    玉米赤霉烯酮是世界上污染最为广泛的一种镰刀菌(Fusarium)毒素,严重危害牲畜以及人类的健康。来源于粉红螺旋聚孢霉(Clonostachys rosea)的玉米赤霉烯酮水解酶(zearalenone hydrolase,ZHD)能有效降解饲料中的玉米赤霉烯酮,然而饲料加工中的高温环境限制了该酶的应用。基于结构特征的理性设计可为酶的热稳定性改造提供指导。本研究首先基于蛋白质结构比对(multiple structure alignment,MSTA)筛选ZHD的结构灵活区,随后基于序列保守性打分以及构象自由能计算设计突变文库,得到基于136号和220号残基的9个单点突变设计。结果表明,9个突变体的热熔融温度(Tm)提高了0.4–5.6℃,其中S220R和S220W热稳定性表现最好,Tm分别提高了5.6℃和4.0℃,45℃下的热半失活时间分别延长了15.4倍和3.1倍,相对酶活分别为野生型的70.6%和57.3%。分子动力学模拟分析表明突变位点及附近区域的作用力得到了增强,突变体S220R和S220W的220-K130氢键成键概率分别增加了37.1%和19.3%、K130-D223盐桥成键概率分别增加了30.1%和12.5%,为ZHD热稳定性的提高作出了贡献。这项工作表明结合天然酶的结构比对、序列分析及自由能计算的热稳定性改造策略的可行性,并获得了热稳定性增强的ZHD变体,为ZHD在工业上的应用打下基础。

    Abstract:

    Zearalenone is one of the most widely polluted Fusarium toxins in the world, seriously endangering livestock and human health. Zearalenone hydrolase (ZHD) derived from Clonostachys rosea can effectively degrade zearalenone. However, the high temperature environment in feed processing hampers the application of this enzyme. Structure-based rational design may provide guidance for engineering the thermal stability of enzymes. In this paper, we used the multiple structure alignment (MSTA) to screen the structural flexibility regions of ZHD. Subsequently, a candidate mutation library was constructed by sequence conservation scoring and conformational free energy calculation, from which 9 single point mutations based on residues 136 and 220 were obtained. The experiments showed that the thermal melting temperature (Tm) of the 9 mutants increased by 0.4–5.6 ℃. The S220R and S220W mutants showed the best thermal stability, the Tm of which increased by 5.6 ℃ and 4.0 ℃ compared to that of the wild type. Moreover, the thermal half-inactivation time at 45 ℃ were 15.4 times and 3.1 times longer, and the relative activities were 70.6% and 57.3% of the wild type. Molecular dynamics simulation analysis showed that the interaction force at and around the mutation site was enhanced, contributing to the improved thermal stability of ZHD. The probability of 220-K130 hydrogen bond of the mutants S220R and S220W increased by 37.1% and 19.3%, and the probability of K130-D223 salt bridge increased by 30.1% and 12.5%, respectively. This work demonstrated the feasibility of thermal stability engineering strategy where the structural and sequence alignment as well as free energy calculation of natural enzymes were integrated, and obtained ZHD variants with enhanced thermal stability, which may facilitate the industrial application of ZHD.

    参考文献
    [1] ZINEDINE A, SORIANO JM, MOLTÓ JC, MAÑES J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone:an oestrogenic mycotoxin[J]. Food and Chemical Toxicology, 2007, 45(1):1-18.
    [2] YU ZL, HU DS, LI Y. Effects of zearalenone on mRNA expression and activity of cytochrome P4501A1 and 1B1 in MCF-7 cells[J]. Ecotoxicology and Environmental Safety, 2004, 58(2):187-193.
    [3] 郑继翠, 马阳阳, 刘江斌, 肖现民. 双酚A及玉米赤霉烯酮对神经母细胞瘤细胞周期蛋白表达的影响[J]. 复旦学报(医学版), 2011, 38(1):1-5. ZHENG JC, MA YY, LIU JB, XIAO XM. Effect of bisphenol A and zearalenone on the expression of cell cycle protein in SK-N-SH human neuroblastoma cells[J]. Fudan University Journal of Medical Sciences, 2011, 38(1):1-5(in Chinese).
    [4] LYAGIN I, EFREMENKO E. Enzymes for detoxification of various mycotoxins:origins and mechanisms of catalytic action[J]. Molecules, 2019, 24(13):2362.
    [5] YUMBE-GUEVARA BE, IMOTO T, YOSHIZAWA T. Effects of heating procedures on deoxynivalenol, nivalenol and zearalenone levels in naturally contaminated barley and wheat[J]. Food Additives & Contaminants, 2003, 20(12):1132-1140.
    [6] 张俊楠. 玉米赤霉烯酮解毒菌的筛选、解毒特性的研究与应用[D]. 北京:中国农业科学院硕士学位论文, 2021. ZHANG JN. Isolation and identification of a bacterial strain with zearalenone detoxicated ability and study on its detoxification characterization and application[D]. Beijing:Master's Thesis of Chinese Academy of Agricultural Sciences, 2021(in Chinese).
    [7] ABD ALLA ES. Zearalenone:incidence, toxigenic fungi and chemical decontamination in Egyptian cereals[J]. Nahrung, 1997, 41(6):362-365.
    [8] PRAPAPANPONG J, UDOMKUSONSRI P, MAHAVORASIRIKUL W, CHOOCHUAY S, TANSAKUL N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry[J]. Journal of Advanced Veterinary and Animal Research, 2019:1.
    [9] PENG W, KO TP, YANG YY, ZHENG YY, CHEN CC, ZHU Z, HUANG CH, ZENG YF, HUANG JW, WANG AHJ, LIU JR, GUO RT. Crystal structure and substrate-binding mode of the mycoestrogen-detoxifying lactonase ZHD from Clonostachys rosea[J]. RSC Advances, 2014, 4(107):62321-62325.
    [10] VIEILLE C, ZEIKUS GJ. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1):1-43.
    [11] TAKAHASHI-ANDO N, OHSATO S, SHIBATA T, HAMAMOTO H, YAMAGUCHI I, KIMURA M. Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea[J]. Applied and Environmental Microbiology, 2004, 70(6):3239-3245.
    [12] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3):1340-1350.
    [13] HEINEMANN PM, ARMBRUSTER D, HAUER B. Active-site loop variations adjust activity and selectivity of the cumene dioxygenase[J]. Nature Communications, 2021, 12:1095.
    [14] GOLDENZWEIG A, GOLDSMITH M, HILL SE, GERTMAN O, LAURINO P, ASHANI Y, DYM O, UNGER T, ALBECK S, PRILUSKY J, LIEBERMAN RL, AHARONI A, SILMAN I, SUSSMAN JL, TAWFIK DS, FLEISHMAN SJ. Automated structure- and sequence-based design of proteins for high bacterial expression and stability[J]. Molecular Cell, 2016, 63(2):337-346.
    [15] GUEROIS R, NIELSEN JE, SERRANO L. Predicting changes in the stability of proteins and protein complexes:a study of more than 1000 mutations[J]. Journal of Molecular Biology, 2002, 320(2):369-387.
    [16] DOMBKOWSKI AA, SULTANA KZ, CRAIG DB. Protein disulfide engineering[J]. FEBS Letters, 2014, 588(2):206-212.
    [17] NESTL BM, HAUER B. Engineering of flexible loops in enzymes[J]. ACS Catalysis, 2014, 4(9):3201-3211.
    [18] KHAN FI, LAN DM, DURRANI R, HUAN WQ, ZHAO ZX, WANG YH. The lid domain in lipases:structural and functional determinant of enzymatic properties[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5:16.
    [19] FENG XD, TANG H, HAN BJ, ZHANG L, LV B, LI C. Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant[J]. Applied Microbiology and Biotechnology, 2016, 100(23):9955-9966.
    [20] ZHAO HM, ARNOLD FH. Directed evolution converts subtilisin E into a functional equivalent of thermitase[J]. Protein Engineering, Design and Selection, 1999, 12(1):47-53.
    [21] DONG RZ, PAN S, PENG ZL, ZHANG Y, YANG JY. mTM-align:a server for fast protein structure database search and multiple protein structure alignment[J]. Nucleic Acids Research, 2018, 46(W1):W380-W386.
    [22] KELLOGG EH, LEAVER-FAY A, BAKER D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability[J]. Proteins, 2011, 79(3):830-838.
    [23] ASHKENAZY H, ABADI S, MARTZ E, CHAY O, MAYROSE I, PUPKO T, BEN-TAL N. ConSurf 2016:an improved methodology to estimate and visualize evolutionary conservation in macromolecules[J]. Nucleic Acids Research, 2016, 44(W1):W344-W350.
    [24] ASHKENAZY H, EREZ E, MARTZ E, PUPKO T, BEN-TAL N. ConSurf 2010:calculating evolutionary conservation in sequence and structure of proteins and nucleic acids[J]. Nucleic Acids Research, 2010, 38(suppl_2):W529-W533.
    [25] LANDAU M, MAYROSE I, ROSENBERG Y, GLASER F, MARTZ E, PUPKO T, BEN-TAL N. ConSurf 2005:the projection of evolutionary conservation scores of residues on protein structures[J]. Nucleic Acids Research, 2005, 33(suppl_2):W299-W302.
    [26] CELNIKER G, NIMROD G, ASHKENAZY H, GLASER F, MARTZ E, MAYROSE I, PUPKO T, BEN-TAL N. ConSurf:using evolutionary data to raise testable hypotheses about protein function[J]. Israel Journal of Chemistry, 2013, 53(3/4):199-206.
    [27] GLASER F, PUPKO T, PAZ I, BELL RE, BECHOR-SHENTAL D, MARTZ E, BEN-TAL N. ConSurf:identification of functional regions in proteins by surface-mapping of phylogenetic information[J]. Bioinformatics (Oxford, England), 2003, 19(1):163-164.
    [28] LINDORFF-LARSEN K, PIANA S, PALMO K, MARAGAKIS P, KLEPEIS JL, DROR RO, SHAW DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field[J]. Proteins:Structure, Function, and Bioinformatics, 2010, 78(8):1950-1958.
    [29] JORGENSEN WL, CHANDRASEKHAR J, MADURA JD, IMPEY RW, KLEIN ML. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2):926-935.
    [30] BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1):014101.
    [31] BERENDSEN HJC, POSTMA JPM, van GUNSTEREN WF, DiNOLA A, HAAK JR. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8):3684-3690.
    [32] LUZAR A, CHANDLER D. Effect of environment on hydrogen bond dynamics in liquid water[J]. Physical Review Letters, 1996, 76(6):928-931.
    [33] BARLOW DJ, THORNTON JM. Ion-pairs in proteins[J]. Journal of Molecular Biology, 1983, 168(4):867-885.
    [34] 陈权, 吕成, 许菲. 基于柔性区域的计算设计改造玉米赤霉烯酮水解酶热稳定性[J]. 生物工程学报, 2021, 37(12):4415-4429. CHEN Q, (LÜ/LV/LU/LYU) C, XU F. Computation-aided design of the flexible region of zearalenone hydrolase improves its thermal stability[J]. Chinese Journal of Biotechnology, 2021, 37(12):4415-4429(in Chinese).
    [35] ELISA FERRANDI E, SAYER C, de ROSE SA, GUAZZELLI E, MARCHESI C, SANEEI V, ISUPOV MN, LITTLECHILD JA, MONTI D. New thermophilic α/β class epoxide hydrolases found in metagenomes from hot environments[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6:144.
    [36] SAYER C, ISUPOV MN, BONCH-OSMOLOVSKAYA E, LITTLECHILD JA. Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis[J]. FEBS Journal, 2015, 282(15):2846-2857.
    [37] SAYER C, FINNIGAN W, ISUPOV MN, LEVISSON M, KENGEN SWM, van der OOST J, HARMER NJ, LITTLECHILD JA. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site[J]. Scientific Reports, 2016, 6:25542.
    [38] HOTTA Y, EZAKI S, ATOMI H, IMANAKA T. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon[J]. Applied and Environmental Microbiology, 2002, 68(8):3925-3931.
    [39] HUI RJ, HU XY, LIU WT, LIU WD, ZHENG YY, CHEN Y, GUO RT, JIN J, CHEN CC. Characterization and crystal structure of a novel zearalenone hydrolase from Cladophialophora bantiana[J]. Acta Crystallographica Section F Structural Biology Communications, 2017, 73(9):515-519.
    [40] CARUGO O, PONGOR S. A normalized root-mean-spuare distance for comparing protein three-dimensional structures[J]. Protein Science, 2008, 10(7):1470-1473.
    [41] YU HR, DALBY PA. Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52):E12192-E12200.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

官嫒林,张萌,许菲. 结构指导的玉米赤霉烯酮水解酶的热稳定性改造[J]. 生物工程学报, 2023, 39(8): 3336-3350

复制
分享
文章指标
  • 点击次数:270
  • 下载次数: 1133
  • HTML阅读次数: 839
  • 引用次数: 0
历史
  • 收稿日期:2022-10-27
  • 最后修改日期:2023-02-02
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第5992768位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司