聚对苯二甲酸乙二醇酯水解酶检测方法的研究进展
作者:
基金项目:

国家自然科学基金(31970048)


Detection methods for polyethylene terephthalate degrading enzymes: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [82]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)是应用最广泛的合成聚酯之一。由于PET不易降解,在环境中积累,对陆地、水生生态系统以及人类健康构成严重威胁。基于生物酶催化的生物降解策略为PET回收利用提供了一种绿色途径,在过去20年间,已发现了多种PET水解酶,并通过蛋白质工程等手段来改善这些酶的降解性能,但是目前仍未找到适合大规模工业应用的PET水解酶。利用传统的检测方法筛选PET水解酶是一个缓慢而复杂的过程。为了促进PET酶法回收的工业化应用,需要研发高效的检测方法。近年来,研究人员开发了多种表征PET水解酶的分析方法。本文总结了可用于筛选PET水解酶的检测方法,如高效液相色谱法、紫外吸光度法和荧光激活液滴分选法等,并对其在筛选PET水解酶的应用方面进行了展望。

    Abstract:

    Polyethylene terephthalate (PET) is one of the most widely used synthetic polyester. It poses serious threat to terrestrial, aquatic ecosystems and human health since it is difficult to be broken down and deposited in the environment. The biodegradation based on enzymatic catalysis offers a sustainable method for recycling PET. A number of PET hydrolases have been discovered in the last 20 years, and protein engineering has increased their degradation capabilities. However, no PET hydrolases that are practical for widespread industrial use have been identified. Screening of PET hydrolase using conventional detection techniques is laborious and inefficient process. Effective detection techniques are required to promote the commercialization of PET hydrolases. Using efficient detection techniques to screen potent industrial enzymes is essential for supporting the widespread industrial implementation of PET hydrolases. To define PET hydrolase, scientists have created a number of analytical techniques recently. The detection techniques that can be used to screen PET hydrolase, including high performance liquid chromatography, ultraviolet absorption spectrometric, and fluorescence activated droplet sorting method, are summarized in this study along with their potential applications.

    参考文献
    [1] LEVIN AG. 125 Questions:Exploration Aild Discovery[EB/OL].[2023-03-13]. https://www.science.org/content/resource/125-questions-exploration-and-discovery.
    [2] HOPEWELL J, DVORAK R, KOSIOR E. Plastics recycling:challenges and opportunities[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2115-2126.
    [3] AMOBONYE A, BHAGWAT P, SINGH S, PILLAI S. Plastic biodegradation:frontline microbes and their enzymes[J]. Science of the Total Environment, 2021, 759:143536.
    [4] WEI R, ZIMMERMANN W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics:how far are we?[J]. Microbial Biotechnology, 2017, 10(6):1308-1322.
    [5] Plastics-the Facts 2022[EB/OL].[2023-03-13]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022.
    [6] TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉ I, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802):216-219.
    [7] HIRAGA K, TANIGUCHI I, YOSHIDA S, KIMURA Y, ODA K. Biodegradation of waste PET:a sustainable solution for dealing with plastic pollution[J]. EMBO Reports, 2019, 20(11):e49365.
    [8] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278):1196-1199.
    [9] GROß C, HAMACHER K, SCHMITZ K, JAGER S. Cleavage product accumulation decreases the activity of cutinase during PET hydrolysis[J]. Journal of Chemical Information and Modeling, 2017, 57(2):243-255.
    [10] KAWAI F, ODA M, TAMASHIRO T, WAKU T, TANAKA N, YAMAMOTO M, MIZUSHIMA H, MIYAKAWA T, TANOKURA M. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190[J]. Applied Microbiology and Biotechnology, 2014, 98(24):10053-10064.
    [11] HU XP, THUMARAT U, ZHANG X, TANG M, KAWAI F. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119[J]. Applied Microbiology and Biotechnology, 2010, 87(2):771-779.
    [12] KAWAI F, KAWABATA T, ODA M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Applied Microbiology and Biotechnology, 2019, 103(11):4253-4268.
    [13] ARNLING BÅÅTH J, BORCH K, WESTH P. A suspension-based assay and comparative detection methods for characterization of polyethylene terephthalate hydrolases[J]. Analytical Biochemistry, 2020, 607:113873.
    [14] REN W, OESER T, SCHMIDT J, RENÉ ME, BARTH M, THEN J, ZIMMERMANN W. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition[J]. Biotechnology and Bioengineering, 2016, 113(8):1658-1665.
    [15] SEO H, KIM S, SON H F, SAGONG H Y, JOO S, KIM K J. Production of extracellular petase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli[J]. Biochemical and Biophysical Research Communications, 2019, 508(1):250-255.
    [16] CARNIEL A, VALONI É, NICOMEDES J, Da CONCEIÇÃO GOMES A, MACHADO de CASTRO A. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59:84-90.
    [17] SON HF, CHO IJ, JOO S, SEO H, SAGONG HY, CHOI SY, LEE SY, KIM KJ. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019, 9(4):3519-3526.
    [18] SON HF, JOO S, SEO H, SAGONG HY, LEE SH, HONG H, KIM KJ. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis[J]. Enzyme and Microbial Technology, 2020, 141:109656.
    [19] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3):1340-1350.
    [20] EBERL A, HEUMANN S, BRÜCKNER T, ARAUJO R, CAVACO-PAULO A, KAUFMANN F, KROUTIL W, GUEBITZ GM. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules[J]. Journal of Biotechnology, 2009, 143(3):207-212.
    [21] LU HY, DIAZ DJ, CZARNECKI NJ, ZHU CZ, KIM W, SHROFF R, ACOSTA DJ, ALEXANDER BR, COLE HO, ZHANG Y, LYND NA, ELLINGTON AD, ALPER HS. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907):662-667.
    [22] ODA M, YAMAGAMI Y, INABA S, OIDA T, YAMAMOTO M, KITAJIMA S, KAWAI F. Enzymatic hydrolysis of PET:functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity[J]. Applied Microbiology and Biotechnology, 2018, 102(23):10067-10077.
    [23] JOO S, CHO IJ, SEO H, SON HF, SAGONG HY, SHIN TJ, CHOI SY, LEE SY, KIM KJ. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9:382.
    [24] AUSTIN HP, ALLEN MD, DONOHOE BS, RORRER NA, KEARNS FL, SILVEIRA RL, POLLARD BC, DOMINICK G, DUMAN R, EL OMARI K, MYKHAYLYK V, WAGNER A, MICHENER WE, AMORE A, SKAF MS, CROWLEY MF, THORNE AW, JOHNSON CW, LEE WOODCOCK H, MCGEEHAN JE, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19):E4350-E4357.
    [25] THEN J, WEI R, OESER T, GERDTS A, SCHMIDT J, BARTH M, ZIMMERMANN W. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate[J]. FEBS Open Bio, 2016, 6(5):425-432.
    [26] BELL EL, SMITHSON R, KILBRIDE S, FOSTER J, HARDY FJ, RAMACHANDRAN S, TEDSTONE AA, HAIGH SJ, GARFORTH AA, DAY PJR, LEVY C, SHAVER MP, GREEN AP. Directed evolution of an efficient and thermostable PET depolymerase[J]. Nature Catalysis, 2022, 5(8):673-681.
    [27] POPOVIC A, TCHIGVINTSEV A, TRAN H, CHERNIKOVA TN, GOLYSHINA OV, YAKIMOV MM, GOLYSHIN PN, YAKUNIN AF. Metagenomics as a tool for enzyme discovery:hydrolytic enzymes from marine-related metagenomes[M]//Advances in Experimental Medicine and Biology. Cham:Springer International Publishing, 2015, 883:1-20.
    [28] PEÑA-GARCÍA C, MARTÍNEZ-MARTÍNEZ M, REYES-DUARTE D, FERRER M. High throughput screening of esterases, lipases and phospholipases in mutant and metagenomic libraries:a review[J]. Combinatorial Chemistry & High Throughput Screening, 2016, 19(8):605-615.
    [29] 韦韧. 聚对苯二甲酸乙二醇酯(PET)水解酶的高通量筛选:进展与挑战[J]. 生物加工过程, 2022, 20(4):353-364. WEI R. High-throughput screening assays for PET hydrolases:progress and challenges[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(4):353-364(in Chinese).
    [30] ZHANG HL, PEREZ-GARCIA P, DIERKES RF, APPLEGATE V, SCHUMACHER J, CHIBANI CM, STERNAGEL S, PREUSS L, WEIGERT S, SCHMEISSER C, DANSO D, PLEISS J, ALMEIDA A, HÖCKER B, HALLAM SJ, SCHMITZ RA, SMITS SHJ, CHOW J, STREIT WR. The bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity[J]. Frontiers in Microbiology, 2022, 12:803896.
    [31] PIRILLO V, POLLEGIONI L, MOLLA G. Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate[J]. The FEBS Journal, 2021, 288(16):4730-4745.
    [32] CHI W, GAN Z. A novel method of studying polymer biodegradation[J]. Polymer, 1998, 39(18):4429-4431.
    [33] GAN Z, FUNG JT, JING X, CHI W, KULICHE WK. A novel laser light-scattering study of enzymatic biodegradation of poly(ε-caprolactone) nanoparticles[J]. Polymer, 1999, 40(8):1961-1967.
    [34] PIRILLO V, ORLANDO M, TESSARO D, POLLEGIONI L, MOLLA G. An efficient protein evolution workflow for the improvement of bacterial PET hydrolyzing enzymes[J]. International Journal of Molecular Sciences, 2021, 23(1):264.
    [35] DANSO D, SCHMEISSER C, CHOW J, ZIMMERMANN W, WEI R, LEGGEWIE C, LI XZ, HAZEN T, STREIT WR. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8):e02773-17.
    [36] CHARNOCK C. A simple and novel method for the production of polyethylene terephthalate containing agar plates for the growth and detection of bacteria able to hydrolyze this plastic[J]. Journal of Microbiological Methods, 2021, 185:106222.
    [37] WEI R, von HAUGWITZ G, PFAFF L, MICAN J, BADENHORST CPS, LIU WD, WEBER G, AUSTIN HP, BEDNAR D, DAMBORSKY J, BORNSCHEUER UT. Mechanism-based design of efficient PET hydrolases[J]. ACS Catalysis, 2022, 12(6):3382-3396.
    [38] LIU P, ZHANG T, ZHENG Y, LI Q, SU T, QI Q. Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms[J]. Engineering Microbiology, 2021, 1:100003.
    [39] WANG X, SONG C, QI Q, ZHANG Y, LI R, HUO L. Biochemical characterization of a polyethylene terephthalate hydrolase and design of high-throughput screening for its directed evolution[J]. Engineering Microbiology, 2022, 2(2):100020.
    [40] FECKER T, GALAZ-DAVISON P, ENGELBERGER F, NARUI Y, SOTOMAYOR M, PARRA LP, RAMÍREZ-SARMIENTO CA. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase[J]. Biophysical Journal, 2018, 114(6):1302-1312.
    [41] SYEDD-LEÓN R, SANDOVAL-BARRANTES M, TRIMIÑO-VÁSQUEZ H, VILLEGAS-PEÑARANDA LR, RODRÍGUEZ-RODRÍGUEZ G. Revisiting the fundamentals of p-nitrophenol analysis for its application in the quantification of lipases activity. A graphical update[J]. Uniciencia, 2020, 34(2):31-43.
    [42] ALCANTARA A, PACE V, HOYOS P, SANDOVAL M, HOLZER W, HERNAIZ M. Chemoenzymatic synthesis of carbohydrates as antidiabetic and anticancer drugs[J]. Current Topics in Medicinal Chemistry, 2014, 14(23):2694-2711.
    [43] STOYTCHEVA M, MONTERO G, ZLATEV R, LEON JA, GOCHEV V. Analytical methods for lipases activity determination:a review[J]. Current Analytical Chemistry, 2012, 8(3):400-407.
    [44] RIBITSCH D, YEBRA AO, ZITZENBACHER S, WU J, NOWITSCH S, STEINKELLNER G, GREIMEL K, DOLISKA A, OBERDORFER G, GRUBER CC, GRUBER K, SCHWAB H, STANA-KLEINSCHEK K, ACERO EH, GUEBITZ GM. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis[J]. Biomacromolecules, 2013, 14(6):1769-1776.
    [45] DIMAROGONA M, NIKOLAIVITS E, KANELLI M, CHRISTAKOPOULOS P, SANDGREN M, TOPAKAS E. Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2015, 1850(11):2308-2317.
    [46] LIU C, SHI C, ZHU S, WEI R, YIN CC. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis[J]. Biochemical and Biophysical Research Communications, 2019, 508(1):289-294.
    [47] ZHONG-JOHNSON EZL, VOIGT CA, SINSKEY AJ. An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films[J]. Scientific Reports, 2021, 11:928.
    [48] THOMSEN TB, SCHUBERT SW, HUNT CJ, WESTHP, MEYER AS. A new continuous assay for quantitative assessment of enzymatic degradation of poly(ethylene terephthalate) (PET)[J]. Enzyme and Microbial Technology, 2023, 162:110142.
    [49] UNCITI-BROCETA JD, CANO-CORTÉS V, ALTEA-MANZANO P, PERNAGALLO S, DÍAZ-MOCHÓN JJ, SÁNCHEZ-MARTÍN RM. Number of nanoparticles per cell through a spectrophotometric method-a key parameter to assess nanoparticle-based cellular assays[J]. Scientific Reports, 2015, 5:10091.
    [50] WEI R, OESER T, BARTH M, WEIGL N, LÜBS A, SCHULZ-SIEGMUND M, HACKER MC, ZIMMERMANN W. Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 103:72-78.
    [51] BELISÁRIO-FERRARI MR, WEI R, SCHNEIDER T, HONAK A, ZIMMERMANN W. Fast turbidimetric assay for analyzing the enzymatic hydrolysis of polyethylene terephthalate model substrates[J]. Biotechnology Journal, 2019, 14(4):1800272.
    [52] SILVA C, DA S, SILVA N, MATAMÁ T, ARAÚJO R, MARTINS M, CHEN S, CHEN J, WU J, CASAL M, CAVACO-PAULO A. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates[J]. Biotechnology Journal, 2011, 6(10):1230-1239.
    [53] NIMCHUA T, PUNNAPAYAK H, ZIMMERMANN W. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi[J]. Biotechnology Journal, 2007, 2(3):361-364.
    [54] MASON TJ, LORIMER JP, BATES DM, ZHAO Y. Dosimetry in sonochemistry:the use of aqueous terephthalate ion as a fluorescence monitor[J]. Ultrasonics Sonochemistry, 1994, 1(2):S91-S95.
    [55] O'NEILL A, CAVACO-PAULO A. Monitoring biotransformations in polyesters[J]. Biocatalysis and Biotransformation, 2004, 22(5/6):353-356.
    [56] WELCH KD, DAVIS TZ, AUST SD. Iron autoxidation and free radical generation:effects of buffers, ligands, and chelators[J]. Archives of Biochemistry and Biophysics, 2002, 397(2):360-369.
    [57] YANG XF, GUO XQ. Fe(Ⅱ)-EDTA chelate-induced aromatic hydroxylation of terephthalate as a new method for the evaluation of hydroxyl radical-scavenging ability[J]. The Analyst, 2001, 126(6):928-932.
    [58] LI LX, ABE Y, KANAGAWA K, SHOJI T, MASHINO T, MOCHIZUKI M, TANAKA M, MIYATA N. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals[J]. Analytica Chimica Acta, 2007, 599(2):315-319.
    [59] 杨智临. 铁基材料产羟基自由基特征与除砷机制[D]. 北京:中国地质大学博士学位论文, 2020. YANG ZL. Hydroxyl radical hydroxyl radical production and arsenic removal by iron-bearing materials[D]. Beijing:Doctoral Dissertation of China University of Geosciences, 2010(in Chinese).
    [60] 吴娜怡郁, 郭晓青, 陈晓靓, 代甜甜, 张晓春. 超声波辅助优化黔产野生地瓜叶总黄酮提取及清除羟基自由基研究[J]. 广东化工, 2022, 49(7):39-41. WU NYY, GUO XQ, CHEN XJ, DAI TT, ZHANG XC. Ultrasonic assisted optimization of wild melon leaves in Guizhou extraction of total flavonoids[J]. Guangdong Chemical Industry, 2022, 49(7):39-41(in Chinese).
    [61] WEI R, OESER T, BILLIG S, ZIMMERMANN W. A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection[J]. Biotechnology Journal, 2012, 7(12):1517-1521.
    [62] PFAFF L, BREITE D, BADENHORST CPS, BORNSCHEUER UT, WEI R. Fluorimetric high-throughput screening method for polyester hydrolase activity using polyethylene terephthalate Nanoparticles[M]//Methods in Enzymology. Amsterdam:Elsevier, 2021:253-270.
    [63] WEIGERT S, GAGSTEIGER A, MENZEL T, HÖCKER B. A versatile assay platform for enzymatic poly(ethylene-terephthalate) degradation[J]. Protein Engineering, Design and Selection, 2021, 34:gzab022.
    [64] 马富强, 杨广宇. 基于液滴微流控技术的超高通量筛选体系及其在合成生物学中的应用[J]. 生物技术通报, 2017, 33(1):83-92. MA FQ, YANG GY. Ultra-high-throughput screening system based on droplet microfluidics and its applications in synthetic biology[J]. Biotechnology Bulletin, 2017, 33(1):83-92(in Chinese).
    [65] QIAO YX, HU R, CHEN DW, WANG L, WANG ZY, YU HY, FU Y, LI CL, DONG ZY, WENG YX, DU WB. Fluorescence-activated droplet sorting of PET degrading microorganisms[J]. Journal of Hazardous Materials, 2022, 424:127417.
    [66] DELRE C, JIANG YF, KANG P, KWON J, HALL A, JAYAPURNA I, RUAN ZY, MA L, ZOLKIN K, LI T, SCOWN CD, RITCHIE RO, RUSSELL TP, XU T. Near-complete depolymerization of polyesters with nano-dispersed enzymes[J]. Nature, 2021, 592(7855):558-563.
    [67] TENNAKOON A, WU X, PATERSON AL, PATNAIK S, PEI Y, LAPOINTE AM, AMMAL SC, HACKLER RA, HEYDEN A, SLOWING II, COATES GW, DELFERRO M, PETERS B, HUANG W, SADOW AD, PERRAS FA. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11):893-901.
    [68] ARTHAM T, DOBLE M. Biodegradation of physicochemically treated polycarbonate by fungi[J]. Biomacromolecules, 2010, 11(1):20-28.
    [69] ZUMSTEIN MT, KOHLER HP E, MCNEILL K, SANDER M. High-throughput analysis of enzymatic hydrolysis of biodegradable polyesters by monitoring cohydrolysis of a polyester-embedded fluorogenic probe[J]. Environmental Science & Technology, 2017, 51(8):4358-4367.
    [70] HOSAKA M, KAMIMURA N, TORIBAMI S, MORI K, KASAI D, FUKUDA M, MASAI EIJI. Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6[J]. Applied and Environmental Microbiology, 2013, 79(19):6148-6155.
    [71] PARDO I, JHA RK, BERMEL RE, BRATTI F, GADDIS M, MCINTYRE E, MICHENER W, NEIDLE EL, DALE T, BECKHAM GT, JOHNSON CW. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1[J]. Metabolic Engineering, 2020, 62:260-274.
    [72] KASAI D, KITAJIMA M, FUKUDA M, MASAI E. Transcriptional regulation of the terephthalate catabolism operon in Comamonas sp. strain E6[J]. Applied and Environmental Microbiology, 2010, 76(18):6047-6055.
    [73] FIGUEIREDO R, PORTILLA LLERENA JP, KIYOTA E, FERREIRA SS, CARDELI BR, SOUZA SCR, SANTOS BRITO M, SODEK L, CESARINO I, MAZZAFERA P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana[J]. Plant Molecular Biology, 2020, 104(4/5):411-427.
    [74] OGAWA Y, KATSUYAMA Y, UENO K, OHNISHI Y. Switching the ligand specificity of the biosensor XylS from meta to para-toluic acid through directed evolution exploiting a dual selection system[J]. ACS Synthetic Biology, 2019, 8(12):2679-2689.
    [75] MAJEWSKI P, GUTOWSKA A, SACHA P, SCHNEIDERS T, TALALAJ M, MAJEWSKA P, ZEBROWSKA A, OJDANA D, WIECZOREK P, HAUSCHILD T, KOWALCZUK O, NIKLINSKI J, RADZIWON P, TRYNISZEWSKA E. Expression of AraC/XylS stress response regulators in two distinct carbapenem-resistant Enterobacter cloacae ST89 biotypes[J]. The Journal of Antimicrobial Chemotherapy, 2020, 75(5):1146-1150.
    [76] LI JW, NINA MRH, ZHANG XY, BAI YP. Engineering transcription factor XylS for sensing phthalic acid and terephthalic acid:an application for enzyme evolution[J]. ACS Synthetic Biology, 2022, 11(3):1106-1113.
    [77] BAYER T, PFAFF L, BRANSON Y, BECKER A, WU SK, BORNSCHEUER UT, WEI R. Biosensor and chemo-enzymatic one-pot cascade applications to detect and transform PET-derived terephthalic acid in living cells[J]. iScience, 2022, 25(5):104326.
    [78] BAYER T, BECKER A, TERHOLSEN H, KIM IJ, MENYES I, BUCHWALD S, BALKE K, SANTALA S, ALMO SC, BORNSCHEUER UT. LuxAB-based microbial cell factories for the sensing, manufacturing and transformation of industrial aldehydes[J]. Catalysts, 2021, 11(8):953.
    [79] BAYER T, MILKER S, WIESINGER T, WINKLER M, MIHOVILOVIC M, RUDROFF F. In vivo synthesis of polyhydroxylated compounds from a "hidden reservoir" of toxic aldehyde species[J]. Chemcatchem, 2017, 9(15):2919-2923.
    [80] WANG X, GAO SY, WANG J, XU SB, LI H, CHEN KQ, OUYANG P. The production of biobased diamines from renewable carbon sources:current advances and perspectives[J]. Chinese Journal of Chemical Engineering, 2021, 30:4-13.
    [81] ROHAN R, PAREEK K, CAI WW, ZHANG YF, XU GD, CHEN ZX, GAO ZQ, DAN Z, CHENG HS. Melamine-terephthalaldehyde-lithium complex:a porous organic network based single ion electrolyte for lithium ion batteries[J]. Journal of Materials Chemistry, 2015, 3:5132-5139.
    [82] WEI R, TISO T, BERTLING J, O'CONNOR K, BLANK LM, BORNSCHEUER UT. Possibilities and limitations of biotechnological plastic degradation and recycling[J]. Nature Catalysis, 2020, 3(11):867-871.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晗笑,肖云杰,杨海涛,王泽方. 聚对苯二甲酸乙二醇酯水解酶检测方法的研究进展[J]. 生物工程学报, 2023, 39(8): 3219-3235

复制
分享
文章指标
  • 点击次数:327
  • 下载次数: 1569
  • HTML阅读次数: 1069
  • 引用次数: 0
历史
  • 收稿日期:2023-02-02
  • 最后修改日期:2023-05-06
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6425222位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司