细菌群集运动特性的研究进展
作者:
基金项目:

天津市科技重大专项与工程项目(17ZXGSNC00070)


Characterization of bacterial swarming motility: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    群集运动(swarming motility)是细菌以群体方式协调性地依靠鞭毛和Ⅳ型菌毛(type Ⅳ pili,TFP)在半固体表面共同运动,是一种典型的协同运动。群集运动因其与生物被膜、子实体的形成、病原体的侵入和微生物的扩散及共生等过程都有着密切的关系而备受人们的关注,是当前微生物领域的一个研究热点。人们对细菌群集运动开展了大量的研究,包括群集运动中关键蛋白表达的变化、细胞间化学交流的变化以及机械性变化等。鞭毛蛋白的表达以及胞内环二鸟苷酸(cyclic diguanosine monophosphate,c-di-GMP)的水平等会对群集运动产生一定的影响,在菌落中复杂地调控着细菌集体行为;群集运动细胞独特的物理性质表现有益于菌落整体的扩张;细菌周围生长环境中的营养和水分含量等因素也在不同程度上影响细菌群集运动的能力。未来,在解析群集运动分子机制的基础上,如何构建一个统一的群集运动模型成为该领域研究面临的一个挑战。

    Abstract:

    Swarming motility is a typical synergistic motion, in which bacteria use flagella and Type IV Pili together to move collectively on semi-solid surfaces. Swarming motility is a hot topic of research in the field of microbiology because of its close relationship with biofilm formation, fruiting bodies formation, pathogen invasion and microbial dispersal and symbiosis. A large number of studies have been conducted on bacterial swarming motility, including changes in the expression of key proteins, changes in chemical communications between bacteria as well as mechanical changes. The expression of flagellin and the level of intracellular c-di-GMP complicatedly regulates the collective behavior of bacteria in colonies, which consequently impacts the swarming motility. The unique physical properties of swarmer cells are conducive to the expansion of the whole colony. Factors such as nutrient and water content in the surrounding growth environment of bacteria also affect the ability of bacteria to swarm to different degrees. It is challenging to construct a universal model of swarming motility based on the molecular mechanisms of swarming in the future.

    参考文献
    [1] MADUKOMA CS, LIANG PX, DIMKOVIKJ A, CHEN JX, LEE SW, CHEN DZ, SHROUT JD. Single cells exhibit differing behavioral phases during early stages of Pseudomonas aeruginosa swarming[J]. Journal of Bacteriology, 2019, 201(19):e00184-19.
    [2] LOMINSKI I, LENDRUM AC. The mechanism of swarming of proteus[J]. The Journal of Pathology and Bacteriology, 1947, 59(4):688-691.
    [3] TUSON HH, COPELAND MF, CAREY S, SACOTTE R, WEIBEL DB. Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments[J]. Journal of Bacteriology, 2013, 195(2):368-377.
    [4] GILLIS A, DUPRES V, MAHILLON J, DUFRÊNE YF. Atomic force microscopy:a powerful tool for studying bacterial swarming motility[J]. Micron, 2012, 43(12):1304-1311.
    [5] CHAWLA R, FORD KM, LELE PP. Torque, but not FliL, regulates mechanosensitive flagellar motor-function[J]. Scientific Reports, 2017, 7:5565.
    [6] KÖHLER T, CURTY LK, BARJA F, van DELDEN C, PECHÈRE JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili[J]. Journal of Bacteriology, 2000, 182(21):5990-5996.
    [7] COUZIN ID, KRAUSE J. Self-organization and collective behavior in vertebrates[J]. Advances in the Study of Behavior, 2003, 32:1-75.
    [8] TONER J, TU YH, RAMASWAMY S. Hydrodynamics and phases of flocks[J]. Annals of Physics, 2005, 318(1):170-244.
    [9] PERUANI F, DEUTSCH A, BÄR M. Nonequilibrium clustering of self-propelled rods[J]. Physical Review E, 2006, 74(3):030904.
    [10] HARSHEY RM. Bacterial motility on a surface:many ways to a common goal[J]. Annual Review of Microbiology, 2003, 57:249-273.
    [11] KAISER D. Coupling cell movement to multicellular development in myxobacteria[J]. Nature Reviews Microbiology, 2003, 1(1):45-54.
    [12] KAISER D. Bacterial swarming:a re-examination of cell-movement patterns[J]. Current Biology, 2007, 17(14):R561-R570.
    [13] KEARNS DB. A field guide to bacterial swarming motility[J]. Nature Reviews Microbiology, 2010, 8(9):634-644.
    [14] ZHANG Y, DUCRET A, SHAEVITZ J, MIGNOT T. From individual cell motility to collective behaviors:insights from a prokaryote, Myxococcus xanthus[J]. FEMS Microbiology Reviews, 2012, 36(1):149-164.
    [15] WENSINK HH, DUNKEL J, HEIDENREICH S, DRESCHER K, GOLDSTEIN RE, LÖWEN H, YEOMANS JM. Meso-scale turbulence in living fluids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(36):14308-14313.
    [16] BE'ER A, HARSHEY RM. Collective motion of surfactant-producing bacteria imparts superdiffusivity to their upper surface[J]. Biophysical Journal, 2011, 101(5):1017-1024.
    [17] WU YL, KAISER AD, JIANG Y, ALBER MS. Periodic reversal of direction allows Myxobacteria to swarm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(4):1222-1227.
    [18] HARSHEY RM, MATSUYAMA T. Dimorphic transition in Escherichia coli and Salmonella typhimurium:surface-induced differentiation into hyperflagellate swarmer cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(18):8631-8635.
    [19] VERSTRAETEN N, BRAEKEN K, DEBKUMARI B, FAUVART M, FRANSAER J, VERMANT J, MICHIELS J. Living on a surface:swarming and biofilm formation[J]. Trends in Microbiology, 2008, 16(10):496-506.
    [20] NICKZAD A, LÉPINE F, DÉZIEL E. Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids[J]. PLoS One, 2015, 10(6):e0128509.
    [21] KAMATKAR NG, SHROUT JD. Surface hardness impairment of quorum sensing and swarming for Pseudomonas aeruginosa[J]. PLoS One, 2011, 6(6):e20888.
    [22] CHUA SL, LIU Y, LI YY, TING HJ, KOHLI GS, CAI Z, SUWANCHAIKASEM P, GOH KKK, NG SP, TOLKER-NIELSEN T, YANG L, GIVSKOV M. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:451.
    [23] WANG QF, FRYE JG, MCCLELLAND M, HARSHEY RM. Gene expression patterns during swarming in Salmonella typhimurium:genes specific to surface growth and putative new motility and pathogenicity genes[J]. Molecular Microbiology, 2004, 52(1):169-187.
    [24] OVERHAGE J, BAINS M, BRAZAS MD, HANCOCK REW. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance[J]. Journal of Bacteriology, 2008, 190(8):2671-2679.
    [25] KOJIMA S, BLAIR DF. Solubilization and purification of the MotA/MotB complex of Escherichia coli[J]. Biochemistry, 2004, 43(1):26-34.
    [26] CASTILLO DJ, NAKAMURA S, MORIMOTO YV, CHE YS, KAMI-IKE N, KUDO S, MINAMINO T, NAMBA K. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor[J]. B Biophysics, 2013, 9:173-181.
    [27] BERG HC. The rotary motor of bacterial flagella[J]. Annual Review of Biochemistry, 2003, 72:19-54.
    [28] COPELAND MF, FLICKINGER ST, TUSON HH, WEIBEL DB. Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes[J]. Applied and Environmental Microbiology, 2010, 76(4):1241-1250.
    [29] WANG QF, SUZUKI A, MARICONDA S, PORWOLLIK S, HARSHEY RM. Sensing wetness:a new role for the bacterial flagellum[J]. The EMBO Journal, 2005, 24(11):2034-2042.
    [30] MARICONDA S, WANG QF, HARSHEY RM. A mechanical role for the chemotaxis system in swarming motility[J]. Molecular Microbiology, 2006, 60(6):1590-1602.
    [31] KHAN IH, REESE TS, KHAN S. The cytoplasmic component of the bacterial flagellar motor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(13):5956-5960.
    [32] FRANCIS NR, SOSINSKY GE, THOMAS D, DEROSIER DJ. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex[J]. Journal of Molecular Biology, 1994, 235(4):1261-1270.
    [33] SARKAR MK, PAUL K, BLAIR D. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20):9370-9375.
    [34] FORD KM, ANTANI JD, NAGARAJAN A, JOHNSON MM, LELE PP. Switching and torque generation in swarming E. coli[J]. Frontiers in Microbiology, 2018, 9:2197.
    [35] BAKER AE, O'TOOLE GA. Bacteria, rev your engines:stator dynamics regulate flagellar motility[J]. Journal of Bacteriology, 2017, 199(12):e00088.
    [36] 段海荣, 魏赛金, 黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展[J]. 中国生物工程杂志, 2020, 40(9):43-51. DUAN HR, WEI SJ, LI XH. Advances in rhamnolipid biosynthesis by Pseudomonas aeruginosa research[J]. China Biotechnology, 2020, 40(9):43-51(in Chinese).
    [37] HOSKING ER, VOGT C, BAKKER EP, MANSON MD. The Escherichia coli MotAB proton channel unplugged[J]. Journal of Molecular Biology, 2006, 364(5):921-937.
    [38] MORIMOTO YV, CHE YS, MINAMINO T, NAMBA K. Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pH luorin expressed in Salmonella[J]. FEBS Letters, 2010, 584(6):1268-1272.
    [39] CHE YS, NAKAMURA S, MORIMOTO YV, KAMI-IKE N, NAMBA K, MINAMINO T. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor[J]. Molecular Microbiology, 2014, 91(1):175-184.
    [40] SHROUT JD, CHOPP DL, JUST CL, MORTEN H, MICHAEL G, PARSEK MR. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional[J]. Molecular Microbiology, 2006, 62(5):1264-77.
    [41] KUCHMA SL, GRIFFIN EF, O'TOOLE GA. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility[J]. Journal of Bacteriology, 2012, 194(19):5388-5403.
    [42] KUCHMA SL, BALLOK AE, MERRITT JH, HAMMOND JH, LU W, RABINOWITZ JD, O'TOOLE GA. Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa:the pilY1 gene and its impact on surface-associated behaviors[J]. Journal of Bacteriology, 2010, 192(12):2950-2964.
    [43] YEUNG ATY, TORFS ECW, JAMSHIDI F, BAINS M, WIEGAND I, HANCOCK REW, OVERHAGE J. Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR[J]. Journal of Bacteriology, 2009, 191(18):5592-5602.
    [44] ANYAN ME, AMIRI A, HARVEY CW, TIERRA G, MORALES-SOTO N, DRISCOLL CM, ALBER MS, SHROUT JD. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):18013-18018.
    [45] BAKER AE, DIEPOLD A, KUCHMA SL, SCOTT JE, HA DG, ORAZI G, ARMITAGE JP, O'TOOLE GA. PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2016, 198(13):1837-1846.
    [46] VALENTINI M, FILLOUX A. Biofilms and cyclic di-GMP (c-di-GMP) signaling:lessons from Pseudomonas aeruginosa and other bacteria[J]. Journal of Biological Chemistry, 2016, 291(24):12547-12555.
    [47] VALENTINI M, FILLOUX A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis[J]. Annual Review of Microbiology, 2019, 73:387-406.
    [48] KRASTEVA PV, GIGLIO KM, SONDERMANN H. Sensing the messenger:the diverse ways that bacteria signal through c-di-GMP[J]. Protein Science, 2012, 21(7):929-948.
    [49] KUCHMA SL, BROTHERS KM, MERRITT JH, LIBERATI NT, AUSUBEL FM, O'TOOLE GA. BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14[J]. Journal of Bacteriology, 2007, 189(22):8165-8178.
    [50] MERRITT JH, BROTHERS KM, KUCHMA SL, O'TOOLE GA. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function[J]. Journal of Bacteriology, 2007, 189(22):8154-8164.
    [51] PAUL K, NIETO V, CARLQUIST WC, BLAIR DF, HARSHEY RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism[J]. Molecular Cell, 2010, 38(1):128-139.
    [52] KUCHMA SL, DELALEZ NJ, FILKINS LM, SNAVELY EA, ARMITAGE JP, O'TOOLE GA. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator[J]. Journal of Bacteriology, 2015, 197(3):420-430.
    [53] KIM W, SURETTE MG. Coordinated regulation of two independent cell-cell signaling systems and swarmer differentiation in Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2006, 188(2):431-440.
    [54] XAVIER KB, BASSLER BL. LuxS quorum sensing:more than just a numbers game[J]. Current Opinion in Microbiology, 2003, 6(2):191-197.
    [55] KIM J, KANG Y, CHOI O, JEONG Y, JEONG JE, LIM JY, KIM M, MOON JS, SUGA H, HWANG I. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae[J]. Molecular Microbiology, 2007, 64(1):165-179.
    [56] JECKEL H, JELLI E, HARTMANN R, SINGH PK, MOK R, TOTZ JF, VIDAKOVIC L, ECKHARDT B, DUNKEL J, DRESCHER K. Learning the space-time phase diagram of bacterial swarm expansion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(5):1489-1494.
    [57] ILKANAIV B, KEARNS DB, ARIEL G, BE'ER A. Effect of cell aspect ratio on swarming bacteria[J]. Physical Review Letters, 2017, 118(15):158002.
    [58] RYAN SD, ARIEL G, BE'ER A. Anomalous fluctuations in the orientation and velocity of swarming bacteria[J]. Biophysical Journal, 2016, 111(1):247-255.
    [59] RAMASWAMY S. The mechanics and statistics of active matter[J]. Annual Review of Condensed Matter Physics, 2010, 1:323-345.
    [60] BAR M, GROSSMANN R, HEIDENREICH S, PERUANI F. Self-propelled rods:insights and perspectives for active matter[J]. Annual Review of Condensed Matter Physics, 2020, 11(1):441-466.
    [61] BE'ER A, STRAIN SK, HERNÁNDEZ RA, BEN-JACOB E, FLORIN EL. Periodic reversals in Paenibacillus dendritiformis swarming[J]. Journal of Bacteriology, 2013, 195(12):2709-2717.
    [62] MEACOCK OJ, DOOSTMOHAMMADI A, FOSTER KR, YEOMANS JM, DURHAM WM. Bacteria solve the problem of crowding by moving slowly[J]. Nature Physics, 2021, 17(2):205-210.
    [63] GIOMI L, BOWICK MJ, MISHRA P, SKNEPNEK R, CRISTINA MARCHETTI M. Defect dynamics in active nematics[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2014, 372(2029):20130365.
    [64] DOOSTMOHAMMADI A, IGNÉS-MULLOL J, YEOMANS J, SAGUÉS F. Active nematics[J]. Nature Communications, 2018, 9(1):3246.
    [65] RICE SA, KOH KS, QUECK SY, LABBATE M, LAM KW, KJELLEBERG S. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues[J]. Journal of Bacteriology, 2005, 187(10):3477-3485.
    [66] KIM W, SURETTE MG. Prevalence of surface swarming behavior in Salmonella[J]. Journal of Bacteriology, 2005, 187(18):6580-6583.
    [67] JAMIESON WD, PEHL MJ, GREGORY GA, ORWIN PM. Coordinated surface activities in Variovorax paradoxus EPS[J]. BMC Microbiology, 2009, 9(1):1-18.
    [68] FRASER GM, HUGHES C. Swarming motility[J]. Current Opinion in Microbiology, 1999, 2(6):630-635.
    [69] BERNIER SP, HA DG, KHAN W, MERRITT JH, O'TOOLE GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling[J]. Research in Microbiology, 2011, 162(7):680-688.
    [70] PALMER KL, AYE LM, WHITELEY M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum[J]. Journal of Bacteriology, 2007, 189(22):8079-8087.
    [71] XAVIER JB, KIM W, FOSTER KR. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa[J]. Molecular Microbiology, 2011, 79(1):166-179.
    [72] KOLLARAN AM, JOGE S, KOTIAN HS, BADAL D, PRAKASH D, MISHRA A, VARMA M, SINGH V. Context-specific requirement of forty-four two-component loci in Pseudomonas aeruginosa swarming[J]. iScience, 2019, 13:305-317.
    [73] DECHESNE A, SMETS BF. Pseudomonad swarming motility is restricted to a narrow range of high matric water potentials[J]. Applied and Environmental Microbiology, 2012, 78(8):2936-2940.
    [74] YANG A, TANG WS, SI TY, TANG JX. Influence of physical effects on the swarming motility of Pseudomonas aeruginosa[J]. Biophysical Journal, 2017, 112(7):1462-1471.
    [75] DE A, CHEN WJ, LI H, WRIGHT JR, LAMENDELLA R, LUKIN DJ, SZYMCZAK WA, SUN K, KELLY L, GHOSH S, KEARNS DB, HE Z, JOBIN C, LUO XP, BYJU A, CHATTERJEE S, YEOH BS, VIJAY-KUMAR M, TANG JX, PRAJAPATI M, et al. Bacterial swarmers enriched during intestinal stress ameliorate damage[J]. Gastroenterology, 2021, 161(1):211-224.
    [76] GAO SF, WU HJ, YU XF, QIAN LM, GAO XW. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01[J]. Biological Control, 2016, 98:11-17.
    [77] KHAN M, KAMRAN M, KADI RH, HASSAN MM, ELHAKEM A, ALHAITHLOUL HAS, SOLIMAN MH, MUMTAZ MZ, ASHRAF M, SHAMIM S. Harnessing the potential of Bacillus altitudinis MT422188 for copper bioremediation[J]. Frontiers in Microbiology, 2022, 13:878000.
    [78] SHAMIM S, REHMAN A, QAZI MH. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida Mt2 in the presence of cadmium[J]. Archives of Environmental Contamination and Toxicology, 2014, 66(3):407-414.
    [79] GORDILLO F, CHÁVEZ FP, JEREZ CA. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates[J]. FEMS Microbiology Ecology, 2007, 60(2):322-328.
    [80] ZHAO K, TSENG BS, BECKERMAN B, JIN F, GIBIANSKY ML, HARRISON JJ, LUIJTEN E, PARSEK MR, WONG GCL. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms[J]. Nature, 2013, 497(7449):388-391.
    [81] 张文超, 张静超, 赵坤. 细菌显微追踪技术在生物被膜中的应用[J]. 生物工程学报, 2017, 33(9):1411-1432. ZHANG WC, ZHANG JC, ZHAO K. Application of bacterial tracking techniques in biofilms[J]. Chinese Journal of Biotechnology, 2017, 33(9):1411-1432(in Chinese).
    [82] ZHANG WC, WANG Y, LU HN, LIU Q, WANG CD, HU W, ZHAO K. Dynamics of solitary predation by Myxococcus xanthus on Escherichia coli observed at the single-cell level[J]. Applied and Environmental Microbiology, 2020, 86(3):e02286-19.
    [83] 贾雄飞, 刘俊康, 徐启旺. 奇异变形杆菌周期性群集运动的研究[J]. 第三军医大学学报, 2005, 27(9):868-870. JIA XF, LIU JK, XU QW. Periodic variety in swarming motility of Proteus mirabilis[J]. Acta Academiae Medicinae Militaris Tertiae, 2005, 27(9):868-870(in Chinese).
    [84] CHEN C, LIU S, SHI XQ, CHATÉ H, WU YL. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions[J]. Nature, 2017, 542(7640):210-214.
    [85] LI H, SHI XQ, HUANG MJ, CHEN X, XIAO MF, LIU CL, CHATÉ H, ZHANG HP. Data-driven quantitative modeling of bacterial active nematics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(3):777-785.
    [86] VICSEK T, CZIRÓK A, BEN-JACOB E, COHEN I, SHOCHET O. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226-1229.
    [87] COUZIN ID, KRAUSE J, JAMES R, RUXTON GD, FRANKS NR. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology, 2002, 218(1):1-11.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晨曦,刘鼎阔. 细菌群集运动特性的研究进展[J]. 生物工程学报, 2023, 39(8): 3188-3203

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-09
  • 最后修改日期:2023-02-01
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司