一碳气体利用微生物及其基因工程改造
作者:
基金项目:

国家重点研发计划(2019YFB1503904);国家自然科学基金(42076206);广东省自然科学基金(2020A1515011073)


Bioconversion of C1 gases and genetic engineering modification of gas-utilizing microorganisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    一碳气体主要包括CO、CO2和CH4等,这些气体来源于陆地生物活动、工业废气以及气化合成气等,其中CO2与CH4是温室气体,对全球气候变化有着重要的影响。利用微生物进行一碳气体生物转化既可以解决废气排放的问题,又能生产燃料及多种化学品。近年来,运用CRISPR/Cas9等基因编辑技术对一碳气体利用微生物进行改造,是提高它们的产物得率、增加产物类型的重要途径。本文主要围绕甲烷营养菌、自养乙酸菌、一氧化碳营养菌等一碳气体利用微生物,综述了其生物学特性、好氧和厌氧代谢途径、代谢产物,以及常用的基因编辑技术(利用同源重组的基因中断技术、二类内含子ClosTron法、CRISPR/Cas基因编辑及以噬菌体重组酶介导的DNA大片段引入等)在它们中的应用,为后续相关研究提供参考。

    Abstract:

    C1 gases including CO, CO2 and CH4, are mainly derived from terrestrial biological activities, industrial waste gas and gasification syngas. Particularly, CO2 and CH4 are two of the most important greenhouse gases contributing to climate change. Bioconversion of C1 gases is not only a promising solution to addressing the problem of waste gases emission, but also a novel route to produce fuels or chemicals. In the past few years, C1-gas-utilizing microorganisms have drawn much attention and a variety of gene-editing technologies have been applied to improve their product yields or to expand product portfolios. This article reviewed the biological characteristics, aerobic or anaerobic metabolic pathways as well as the metabolic products of methanotrophs, autotrophic acetogens, and carboxydotrophic bacteria. In addition, gene-editing technologies (e.g. gene interruption technology using homologous recombination, group II intron ClosTron technology, CRISPR/Cas gene editing and phage recombinase-mediated efficient integration of large DNA fragments) and their application in these C1-gas-utilizing microorganisms were also summarized.

    参考文献
    [1] FORSTER P, STORELVMO T, AMOUR K. The Earth's energy budget, climate feedbacks, and climate sensitivity[M]//In:Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge and New York:Cambridge University Press, 2021.
    [2] DÜRRE P, EIKMANNS BJ. C1-carbon sources for chemical and fuel production by microbial gas fermentation[J]. Current Opinion in Biotechnology, 2015, 35:63-72.
    [3] 刘昊鹏, 刘超, 王雯, 刘广青. 基于厌氧微生物的碳链延长合成高价值化学品反应机理及研究进展:不同电子供体[J]. 北京化工大学学报(自然科学版), 2020, 47(5):1-17. LIU HP, LIU C, WANG W, LIU GQ. Advances in understanding the mechanism of chain elongation with anaerobic microbes for the synthesis of high value-added chemicals:the effect of different electron donors[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2020, 47(5):1-17(in Chinese).
    [4] LIU ZY, JIA DC, ZHANG KD, ZHU HF, ZHANG Q, JIANG WH, GU Y, LI FL. Ethanol metabolism dynamics in Clostridium ljungdahlii grown on carbon monoxide[J]. Applied and Environmental Microbiology, 2020, 86(14):e00730-e00720.
    [5] SŐHNGEN NL. Uber bakterien, welche methan ab kohlenstoffnahrung and energiequelle gebrauchen[J]. Parasitenkd Infectionskr Abt, 1906, 15:513-517.
    [6] DWORKIN M, FOSTER JW. Studies on Pseudomonas methanica (Söhngen) nov. comb[J]. Journal of Bacteriology, 1956, 72(5):646-659.
    [7] NGUYEN DTN, LEE OK, LIM C, LEE J, NA JG, LEE EY. Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway[J]. Metabolic Engineering, 2020, 59:142-150.
    [8] HOGENDOORN C, POL A, NUIJTEN GHL, OP den CAMP HJM. Methanol production by Methylacidiphilum fumariolicum SolV under different growth conditions[J]. Applied and Environmental Microbiology, 2020, 86(18):e01188-e01120.
    [9] FEI Q, PURI AW, SMITH H, DOWE N, PIENKOS PT. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense[J]. Biotechnology for Biofuels, 2018, 11:129.
    [10] WOODLAND MP, DALTON H. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath)[J]. The Journal of Biological Chemistry, 1984, 259(1):53-59.
    [11] COLEMAN WJ, VIDANES GM, COTTAREL G, MULEY S, KAMIMURA R, JAVAN AF, SUN JP, GROBAN ES. Biological conversion of multi-carbon compounds from methane:US20140273128[P]. 2014-09-18.
    [12] HENARD CA, SMITH H, DOWE N, KALYUZHNAYA MG, PIENKOS PT, GUARNIERI MT. Bioconversion of methane to lactate by an obligate methanotrophic bacterium[J]. Scientific Reports, 2016, 6:21585.
    [13] DEMIDENKO A, AKBERDIN IR, ALLEMANN M, ALLEN EE, KALYUZHNAYA MG. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)[J]. Frontiers in Microbiology, 2017, 7:2167.
    [14] STONE K, HILLIARD M, BADR K, BRADFORD A, HE QP, WANG J. Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1[J]. Biochemical Engineering Journal, 2020, 161:107707.
    [15] RESHETNIKOV AS, KHMELENINA VN, TROTSENKO YA. Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z"[J]. Archives of Microbiology, 2006, 184(5):286-297.
    [16] KHMELENINA VN, KALYUZHNAYA MG, STAROSTINA NG, SUZINA NE, TROTSENKO YA. Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from tuva soda lakes[J]. Current Microbiology, 1997, 35(5):257-261.
    [17] YE RW, YAO H, STEAD K, WANG T, TAO L, CHENG Q, SHARPE PL, SUH W, NAGEL E, ARCILLA D, DRAGOTTA D, MILLER ES. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a[J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34(4):289-299.
    [18] KENNEY GE, GOERING AW, ROSS MO, DeHART CJ, THOMAS PM, HOFFMAN BM, KELLEHER NL, ROSENZWEIG AC. Characterization of methanobactin from Methylosinus sp. LW4[J]. Journal of the American Chemical Society, 2016, 138(35):11124-11127.
    [19] BORDEL S, RODRÍGUEZ E, MUÑOZ R. Genome sequence of Methylocystis hirsuta CSC1, a polyhydroxyalkanoate producing methanotroph[J]. Microbiology Open, 2019, 8(6):e00771.
    [20] DEDYSH SN, NAUMOFF DG, VOROBEV AV, KYRPIDES N, WOYKE T, SHAPIRO N, CROMBIE AT, MURRELL JC, KALYUZHNAYA MG, SMIRNOVA AV, DUNFIELD PF. Draft genome sequence of Methyloferula stellata AR4, an obligate methanotroph possessing only a soluble methane monooxygenase[J]. Genome Announcements, 2015, 3(2):e01555-e01514.
    [21] DUNFIELD PF, BELOVA SE, VOROB'EV AV, CORNISH SL, DEDYSH SN. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 11):2659-2664.
    [22] WU ML, van TEESELING MCF, WILLEMS MJR, van DONSELAAR EG, KLINGL A, RACHEL R, GEERTS WJC, JETTEN MSM, STROUS M, van NIFTRIK L. Ultrastructure of the denitrifying methanotroph "candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium[J]. Journal of Bacteriology, 2012, 194(2):284-291.
    [23] HAROON MF, HU SH, SHI Y, IMELFORT M, KELLER J, HUGENHOLTZ P, YUAN ZG, TYSON GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464):567-570.
    [24] KALYUZHNAYA MG, PURI AW, LIDSTROM ME. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29:142-152.
    [25] CHISTOSERDOVA L, VORHOLT JA, LIDSTROM ME. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea[J]. Genome Biology, 2005, 6(2):208.
    [26] BARIK S, PRIETO S, HARRISON SB, CLAUSEN EC, GADDY JL. Biological production of alcohols from coal through indirect liquefaction[J]. Applied Biochemistry and Biotechnology, 1988, 18(1):363-378.
    [27] GADDY JL, CLAUSEN EC. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism:US5173429[P]. 1992-12-22.
    [28] 徐惠娟, 梁翠谊, 许敬亮, 何敏超, 袁振宏, 陈小燕, 张宇. CO一步法C. autoethanogenum发酵产乙醇的工艺研究[J]. 农业工程学报, 2017, 33(23):246-251. XU HJ, LIANG CY, XU JL, HE MC, YUAN ZH, CHEN XY, ZHANG Y. Study on one-step ethanol production from CO by C. autoethanogenum[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23):246-251(in Chinese).
    [29] KÖPKE M, MIHALCEA C, LIEW F, TIZARD JH, ALI MS, CONOLLY JJ, AL-SINAWI B, SIMPSON SD. 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas[J]. Applied and Environmental Microbiology, 2011, 77(15):5467-5475.
    [30] FERNÁNDEZ-NAVEIRA Á, ABUBACKAR HN, VEIGA MC, KENNES C. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans[J]. Applied Microbiology and Biotechnology, 2016, 100(7):3361-3370.
    [31] KUNDIYANA DK, WILKINS MR, MADDIPATI P, HUHNKE RL. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei[J]. Bioresource Technology, 2011, 102(10):5794-5799.
    [32] ZAHN JA, SAXENA J. Novel ethanologenic Clostridium species, Clostridium coskatii:US20120156747[P]. 2012-06-21.
    [33] KÖPKE M, STRAUB M, DÜRRE P. Clostridium difficile is an autotrophic bacterial pathogen[J]. PLoS One, 2013, 8(4):e62157.
    [34] KERBY R, ZEIKUS JG. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source[J]. Current Microbiology, 1983, 8(1):27-30.
    [35] WEGHOFF MC, MÜLLER V. CO metabolism in the thermophilic acetogen Thermoanaerobacter kivui[J]. Applied and Environmental Microbiology, 2016, 82(8):2312-2319.
    [36] GENTHNER BR, BRYANT MP. Growth of Eubacterium limosum with carbon monoxide as the energy source[J]. Applied and Environmental Microbiology, 1982, 43(1):70-74.
    [37] BERTSCH J, MÜLLER V. CO metabolism in the acetogen Acetobacterium woodii[J]. Applied and Environmental Microbiology, 2015, 81(17):5949-5956.
    [38] PIERCE E, XIE G, BARABOTE RD, SAUNDERS E, HAN CS, DETTER JC, RICHARDSON P, BRETTIN TS, das A, LJUNGDAHL LG, RAGSDALE SW. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)[J]. Environmental Microbiology, 2008, 10(10):2550-2573.
    [39] HEISKANEN H, LLKKA V, LIISA V. The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum[J]. Enzyme and Microbial Technology, 2007, 41(3):362-367.
    [40] MOHAMMADI M, NAJAFPOUR GD, YOUNESI H, LAHIJANI P, UZIR MH, MOHAMED AR. Bioconversion of synthesis gas to second generation biofuels:a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4255-4273.
    [41] SHAO LJ, HU SY, YANG Y, GU Y, CHEN J, YANG YL, JIANG WH, YANG S. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum[J]. Cell Research, 2007, 17(11):963-965.
    [42] 聂明. 气候变暖下水圈甲烷排放及其微生物学机制[J]. 微生物学报, 2020, 60(9):1821-1833. NIE M. Hydrospheric methane emission and its microbiological mechanisms under climate warming[J]. Acta Microbiologica Sinica, 2020, 60(9):1821-1833(in Chinese).
    [43] LIU PF, KLOSE M, CONRAD R. Temperature-dependent network modules of soil methanogenic bacterial and archaeal communities[J]. Frontiers in Microbiology, 2019, 10:496.
    [44] 李聪, 曹文广. CRISPR/Cas9介导的基因编辑技术研究进展[J]. 生物工程学报, 2015, 31(11):1531-1542. LI C, CAO WG. Advances in CRISPR/Cas9-mediated gene editing[J]. Chinese Journal of Biotechnology, 2015, 31(11):1531-1542(in Chinese).
    [45] HUANG H, CHAI CS, YANG S, JIANG WH, GU Y. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii[J]. Metabolic Engineering, 2019, 52:293-302.
    [46] HE L, FU YF, LIDSTROM ME. Quantifying methane and methanol me/tabolism of Methylotuvimicrobium buryatense 5GB1C under substrate limitation[J]. mSystems, 2019, 4(6):e00748-e00719.
    [47] GARG S, CLOMBURG JM, GONZALEZ R. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6):379-391.
    [48] NGUYEN DTN, LEE OK, HADIYATI S, AFFIFAH AN, KIM MS, LEE EY. Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane[J]. Metabolic Engineering, 2019, 54:170-179.
    [49] HENARD CA, AKBERDIN IR, KALYUZHNAYA MG, GUARNIERI MT. Muconic acid production from methane using rationally-engineered methanotrophic biocatalysts[J]. Green Chemistry, 2019, 21(24):6731-6737.
    [50] HELD MA, ZHAO X, CHAO LY. New genetically modified microorganism comprising a heterologousgene under the control of a molecular switch, useful for making a multicarbon product, e.g. 2,3-butanediol, 1,4-butanediol and isobutyraldehyde[P]. US:0040344. 2020-02-06.
    [51] DONALDSON GK, HOLLANDS K, PICATAGGIO SK. Biocatalyst for conversion of methane and methanol to isoprene:US20150225743[P]. 2015-08-13.
    [52] BORDEL S, RODRÍGUEZ Y, HAKOBYAN A, RODRÍGUEZ E, LEBRERO R, MUÑOZ R. Genome scale metabolic modeling reveals the metabolic potential of three type II methanotrophs of the genus Methylocystis[J]. Metabolic Engineering, 2019, 54:191-199.
    [53] HEAP JT, PENNINGTON OJ, CARTMAN ST, MINTON NP. A modular system for Clostridium shuttle plasmids[J]. Journal of Microbiological Methods, 2009, 78(1):79-85.
    [54] 汪俊卿, 修翔, 王瑞明, 范翰, 李丕武, 苏静, 薛乐, 张丽华, 王松江, 王建彬, 郭传庄, 隋松森. 基于CRISPR-Cas9的基因组无痕编辑的载体与应用:CN109722436A[P]. 2019-05-07. WANG JQ, XIU X, WANG RM, FAN H, LI PW, SU J, XUE L, ZHANG LH, WANG SJ, WANG JB, GUO CZ, SUI SS. Method of utilizing traceless editing technology to increase diacid yield:CN109722436A[P]. 2019-05-07(in Chinese).
    [55] YANG GH, JIA DC, JIN L, JIANG YQ, WANG Y, JIANG WH, GU Y. Rapid generation of universal synthetic promoters for controlled gene expression in both gas-fermenting and saccharolytic Clostridium species[J]. ACS Synthetic Biology, 2017, 6(9):1672-1678.
    [56] TAN Y, LIU JJ, LIU Z, LI FL. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528[J]. Journal of Basic Microbiology, 2014, 54(9):996-1004.
    [57] WOOLSTON BM, EMERSON DF, CURRIE DH, STEPHANOPOULOS G. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi)[J]. Metabolic Engineering, 2018, 48:243-253.
    [58] UEKI T, NEVIN KP, WOODARD TL, LOVLEY DR. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii[J]. mBio, 2014, 5(5):e01636-e01614.
    [59] NAKASHIMADA Y, IWASAKI Y, KITA A. O-405 development of genetic transformation system in thermophilic acetogen to produce useful materials from H2-CO2 or syngas from biomass[C]//Conference on Biomass Science. The Japan Institute of Energy, 2014.
    [60] KITA A, IWASAKI Y, SAKAI S, OKUTO S, TAKAOKA K, SUZUKI T, YANO S, SAWAYAMA S, TAJIMA T, KATO J, NISHIO N, MURAKAMI K, NAKASHIMADA Y. Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica[J]. Journal of Bioscience and Bioengineering, 2013, 115(4):347-352.
    [61] de SOUZA PINTO LEMGRUBER R, VALGEPEA K, TAPPEL R, BEHRENDORFF JB, PALFREYMAN RW, PLAN M, HODSON MP, SIMPSON SD, NIELSEN LK, KÖPKE M, MARCELLIN E. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)[J]. Metabolic Engineering, 2019, 53:14-23.
    [62] KÖPKE M, GERTH ML, MADDOCK DJ, MUELLER AP, LIEW F, SIMPSON SD, PATRICK WM. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase[J]. Applied and Environmental Microbiology, 2014, 80(11):3394-3403.
    [63] LIEW F, HENSTRA AM, WINZER K, KÖPKE M, SIMPSON SD, MINTON NP. Insights into CO2 fixation pathway of Clostridium autoethanogenum by targeted mutagenesis[J]. mBio, 2016, 7(3):e00427-e00416.
    [64] 李宁. 食气梭菌分子遗传改造方法的建立及应用[D]. 北京:中国科学院大学硕士学位论文, 2015. LI N. Establishment and application of molecular genetic modification method of Clostridium aerophagus[D]. Beijing:Master's Thesis of University of Chinese Academy of Sciences, 2015(in Chinese).
    [65] CHENG C, LI W, LIN M, Yang ST. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose[J]. Bioresource Technology, 2019, 284:415-423.
    [66] LEE HM, CHOI DW, KIM S, LEE A, KIM M, ROH YJ, JO YH, CHO HY, LEE HJ, LEE SR, TARRAGO L, GLADYSHEV VN, KIM JH, LEE BC. Biosensor-linked immunosorbent assay for the quantification of methionine oxidation in target proteins[J]. ACS Sensors, 2022, 7(1):131-141.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周雨,阮祚禧,方崇,陈小燕,徐惠娟,王忠铭,袁振宏. 一碳气体利用微生物及其基因工程改造[J]. 生物工程学报, 2023, 39(8): 3125-3142

复制
分享
文章指标
  • 点击次数:436
  • 下载次数: 970
  • HTML阅读次数: 1171
  • 引用次数: 0
历史
  • 收稿日期:2022-09-14
  • 最后修改日期:2023-01-10
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6374188位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司