实验室适应性进化技术在光合蓝细菌底盘工程中的研究进展
作者:
基金项目:

国家重点研发计划(2018YFA0903600);国家自然科学基金(32070083)


Advances in using adaptive laboratory evolution technology for engineering of photosynthetic cyanobacteria
Author:
  • GAO Jiawei

    GAO Jiawei

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Frontier Science Center for Synthetic Biology, Ministry of Education, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Xiaofei

    ZHU Xiaofei

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Frontier Science Center for Synthetic Biology, Ministry of Education, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Tao

    SUN Tao

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Frontier Science Center for Synthetic Biology, Ministry of Education, Tianjin 300072, China;Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Lei

    CHEN Lei

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Frontier Science Center for Synthetic Biology, Ministry of Education, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Weiwen

    ZHANG Weiwen

    Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;Frontier Science Center for Synthetic Biology, Ministry of Education, Tianjin 300072, China;Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [107]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    蓝细菌是唯一可进行放氧光合作用的原核微生物,基于光合蓝细菌构建“自养型细胞工厂”具有广阔前景。但以蓝细菌作为底盘进行生物燃料及化学品的合成仍存在细胞耐受能力差、产量低等问题,导致实现工业化生产的经济可行性还比较低,亟需通过合成生物学等技术手段构建新的藻株。近年来,实验室适应性进化(adaptive laboratory evolution,ALE)已被用于底盘工程中,实现了优化生长速度、增加耐受性、加强底物利用和提高产品产量等目标。ALE在提高蓝细菌鲁棒性方面取得了一定进展,已获得了耐受高光、重金属离子、高盐和高浓度有机溶剂胁迫的进化藻株。但是,蓝细菌中的ALE策略效率相对较低,耐受各胁迫的分子机制并未阐释完全。本文综述了ALE相关技术策略及其在蓝细菌底盘工程中的应用,讨论了如何借鉴其他微生物中ALE手段,构建更大ALE突变文库、增加菌株的突变频率、缩短进化时间、探索多重胁迫耐受工程菌构建原则及研究策略等,高效解析进化菌株的突变体库,构建高产量、鲁棒性强的工程菌株等,以期未来促进蓝细菌底盘的改造及其工程菌的规模化应用。

    Abstract:

    Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis, which have potential to serve as “autotrophic cell factories”. However, the synthesis of biofuels and chemicals using cyanobacteria as chassis are suffered from poor stress tolerance and low yield, resulting in low economic feasibility for industrial production. Thus, it's urgent to construct new cyanobacterial chassis by means of synthetic biology. In recent years, adaptive laboratory evolution (ALE) has made great achievements in chassis engineering, including optimizing growth rate, increasing tolerance, enhancing substrate utilization and increasing product yield. ALE has also made some progress in improving the tolerance of cyanobacteria to high light intensity, heavy metal ions, high concentrations of salt and organic solvents. However, the engineering efficiency of ALE strategy in cyanobacteria is generally low, and the molecular mechanisms underpinning the tolerance to various stresses have not been fully elucidated. To this end, this review summarizes the ALE-associated technical strategies and their applications in cyanobacteria chassis engineering, following by discussing how to construct larger ALE mutation library, increase mutation frequency of strains and shorten evolution time. Moreover, exploration of the construction principles and strategies for constructing multi-stress tolerant cyanobacteria, and efficient analysis the mutant libraries of evolved strains as well as construction of strains with high yield and strong robustness are discussed, with the aim to facilitate the engineering of cyanobacteria chassis and the application of engineered cyanobacteria in the future.

    参考文献
    [1] HAMILTON TL, BRYANT DA, MACALADY JL. The role of biology in planetary evolution:cyanobacterial primary production in low-oxygen Proterozoic Oceans[J]. Environmental Microbiology, 2016, 18(2):325-340.
    [2] STANIER RY, COHEN-BAZIRE G. Phototrophic prokaryotes:the cyanobacteria[J]. Annual Review of Microbiology, 1977, 31:225-274.
    [3] ANDREWS F, FAULKNER M, TOOGOOD HS, SCRUTTON NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria[J]. Biotechnology for Biofuels, 2021, 14(1):1-17.
    [4] GAO XY, SUN T, PEI GS, CHEN L, ZHANG WW. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals[J]. Applied Microbiology and Biotechnology, 2016, 100(8):3401-3413.
    [5] PATTHARAPRACHAYAKUL N, LEE HJ, INCHAROENSAKDI A, WOO HM. Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2[J]. Journal of Agricultural and Food Chemistry, 2019, 67(49):13658-13664.
    [6] HASUNUMA T, TAKAKI A, MATSUDA M, KATO Y, VAVRICKA CJ, KONDO A. Single-stage astaxanthin production enhances the nonmevalonate pathway and photosynthetic central metabolism in Synechococcus sp. PCC 7002[J]. ACS Synthetic Biology, 2019, 8(12):2701-2709.
    [7] JODLBAUER J, ROHR T, SPADIUT O, MIHOVILOVIC MD, RUDROFF F. Biocatalysis in green and blue:cyanobacteria[J]. Trends in Biotechnology, 2021, 39(9):875-889.
    [8] GUDMUNDSSON S, NOGALES J. Cyanobacteria as photosynthetic biocatalysts:a systems biology perspective[J]. Molecular BioSystems, 2015, 11(1):60-70.
    [9] DOBSON Z, AHAD S, VANLANDINGHAM J, TOPORIK H, VAUGHN N, VAUGHN M, WILLIAMS D, REPPERT M, FROMME P, MAZOR Y. The structure of photosystem I from a high-light-tolerant cyanobacteria[J]. eLife, 2021, 10:67518.
    [10] OGBAGA CC, STEPIEN P, ATHAR HUR, ASHRAF M. Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants[J]. Critical Reviews in Biotechnology, 2018, 38(4):559-572.
    [11] LI H, ZHAO QY, HUANG H. Current states and challenges of salt-affected soil remediation by cyanobacteria[J]. Science of the Total Environment, 2019, 669:258-272.
    [12] PANDEY N, PATEL A, TIWARI S, PRASAD SM. Differential response of copper nanoparticles and ionic copper on growth, chlorophyll fluorescence, oxidative stress, and antioxidant machinery of two paddy field cyanobacteria[J]. Ecotoxicology, 2022, 31(6):933-947.
    [13] SINETOVA MA, LOS DA. Lessons from cyanobacterial transcriptomics:universal genes and triggers of stress responses[J]. Molecular Biology, 2016, 50(4):606-614.
    [14] JULLESSON D, DAVID F, PFLEGER B, NIELSEN J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals[J]. Biotechnology Advances, 2015, 33(7):1395-1402.
    [15] LI DJ, WANG L, ZHAO QY, WEI W, SUN YH. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution[J]. Bioresource Technology, 2015, 185:269-275.
    [16] ZHENG YY, HONG KQ, WANG BW, LIU DY, CHEN T, WANG ZW. Genetic diversity for accelerating microbial adaptive laboratory evolution[J]. ACS Synthetic Biology, 2021, 10(7):1574-1586.
    [17] HEMANSI, HIMANSHU, PATEL AK, SAINI JK, SINGHANIA RR. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production[J]. Bioresource Technology, 2022, 344:126247.
    [18] ATWOOD KC, SCHNEIDER LK, RYAN FJ. Periodic selection in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1951, 37(3):146-155.
    [19] NOVICK A, SZILARD L. Experiments with the chemostat on spontaneous mutations of bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(12):708-719.
    [20] JUNG ST, LAUCHLIR, ARNOLD FH. Cytochrome P450:taming a wild type enzyme[J]. Current Opinion in Biotechnology, 2011, 22(6):809-817.
    [21] SMITH GP, PETRENKO VA. Phage display[J]. Chemical Reviews, 1997, 97(2):391-410.
    [22] LACROIX RA, SANDBERG TE, O'BRIEN EJ, UTRILLA J, EBRAHIM A, GUZMAN GI, SZUBIN R, PALSSON BO, FEIST AM. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium[J]. Applied and Environmental Microbiology, 2015, 81(1):17-30.
    [23] ZHANG J, JIN B, FU J, WANG ZW, CHEN T. Adaptive laboratory evolution of Halomonas bluephagenesis enhances acetate tolerance and utilization to produce poly(3-hydroxybutyrate)[J]. Molecules, 2022, 27(9):3022.
    [24] FLETCHER E, FEIZI A, BISSCHOPS MMM, HALLSTRÖM BM, KHOOMRUNG S, SIEWERS V, NIELSEN J. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments[J]. Metabolic Engineering, 2017, 39:19-28.
    [25] ZHANG WP, CHENG Y, LI YD, DU GC, XIE GF, ZOU HJ, ZHOU JW, CHEN J. Adaptive evolution relieves nitrogen catabolite repression and decreases urea accumulation in cultures of the Chinese rice wine yeast strain Saccharomyces cerevisiae XZ-11[J]. Journal of Agricultural and Food Chemistry, 2018, 66(34):9061-9069.
    [26] GIBSON B, DAHABIEH M, KROGERUS K, JOUHTEN P, MAGALHÃES F, PEREIRA R, SIEWERS V, VIDGREN V. Adaptive laboratory evolution of ale and lager yeasts for improved brewing efficiency and beer quality[J]. Annual Review of Food Science and Technology, 2020, 11:23-44.
    [27] GODARA A, KAO KC. Adaptive laboratory evolution of β-caryophyllene producing Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2021, 20(1):1-13.
    [28] XU CX, SUN T, LI SB, CHEN L, ZHANG WW. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2018, 11(1):1-15.
    [29] MOHSEN MG, JI DB, KOOL ET. Polymerase synthesis of four-base DNA from two stable dimeric nucleotides[J]. Nucleic Acids Research, 2019, 47(18):9495-9501.
    [30] TILLICH UM, LEHMANN S, SCHULZE K, DÜHRING U, FROHME M. The optimal mutagen dosage to induce point-mutations in Synechocystis sp. PCC6803 and its application to promote temperature tolerance[J]. PLoS One, 2012, 7(11):e49467.
    [31] LIU KY, FANG H, CUI FJ, NYABAKO BA, TAO TL, ZAN XY, CHEN HY, SUN WJ. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology, 2020, 104(14):6363-6373.
    [32] WANG XW, LI QG, SUN CM, CAI Z, ZHENG XM, GUO X, NI XM, ZHOU WJ, GUO YM, ZHENG P, CHEN N, SUN JB, LI Y, MA YH. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli[J]. Microbial Cell Factories, 2019, 18(1):1-13.
    [33] OVERBECK TJ, WELKER DL, HUGHES JE, STEELE JL, BROADBENT JR. Transient MutS-based hypermutation system for adaptive evolution of Lactobacillus casei to low pH[J]. Applied and Environmental Microbiology, 2017, 83(20):e01120-17.
    [34] BIRKHOLZ N, JACKSON SA, FAGERLUND RD, FINERAN PC. A mobile restriction-modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease[J]. Nucleic Acids Research, 2022, 50(6):3348-3361.
    [35] ASAKURA Y, KOJIMA H, KOBAYASHI I. Evolutionary genome engineering using a restriction-modification system[J]. Nucleic Acids Research, 2011, 39(20):9034-9046.
    [36] KIM S, KIM Y, SUH DH, LEE CH, YOO SM, LEE SY, YOON SH. Heat-responsive and time-resolved transcriptome and metabolome analyses of Escherichia coli uncover thermo-tolerant mechanisms[J]. Scientific Reports, 2020, 10:17715.
    [37] KELLER P, REITER MA, KIEFER P, GASSLER T, HEMMERLE L, CHRISTEN P, NOOR E, VORHOLT JA. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle[J]. Nature Communications, 2022, 13:5243.
    [38] RIAZ S, JIANG Y, XIAO M, YOU DW, KLEPACZ-SMÓŁKA A, RASUL F, DAROCH M. Generation of miniploid cells and improved natural transformation procedure for a model cyanobacterium Synechococcus elongatus PCC 7942[J]. Frontiers in Microbiology, 2022, 13:959043.
    [39] PRICE S, KUZHIUMPARAMBIL U, PERNICE M, HERDEAN A, RALPH P. Enhancement of cyanobacterial PHB production using random chemical mutagenesis with detection through FACS[J]. Bioprocess and Biosystems Engineering, 2023, 46(2):297-306.
    [40] JIAN XJ, GUO XJ, CAI ZS, WEI LF, WANG LY, XING XH, ZHANG C. Single-cell microliter-droplet screening system (MISS Cell):an integrated platform for automated high-throughput microbial monoclonal cultivation and picking[J]. Biotechnology and Bioengineering, 2023, 120(3):778-792.
    [41] YUAN HL, TU R, TONG XW, LIN YP, ZHANG YY, WANG QH. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system[J]. Journal of Industrial Microbiology and Biotechnology, 2022, 49(3):kuac007.
    [42] ZHANG JH, LI XC, GUO LQ, DENG ZM, WANG DW, LIU LS. Assessment of heavy metal pollution and water quality characteristics of the reservoir control reaches in the middle Han River, China[J]. Science of the Total Environment, 2021, 799:149472.
    [43] COURTOIS P, RORAT A, LEMIERE S, GUYONEAUD R, ATTARD E, LEVARD C, VANDENBULCKE F. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge:a review of effects on microorganisms, plants and animals[J]. Environmental Pollution, 2019, 253:578-598.
    [44] CULLEN JT, MALDONADO MT. Biogeochemistry of cadmium and its release to the environment[M]//Cadmium:From Toxicity to Essentiality. Dordrecht:Springer Netherlands, 2012:31-62.
    [45] JAISHANKAR M, TSETEN T, ANBALAGAN N, MATHEW BB, BEEREGOWDA KN. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014, 7(2):60-72.
    [46] CHEN L, ZHU Y, SONG ZD, WANG JX, ZHANG WW. An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803[J]. Journal of Proteomics, 2014, 103:87-102.
    [47] AL-HOMAIDAN AA, ALABDULLATIF JA, AL-HAZZANI AA, AL-GHANAYEM AA, ALABBAD AF. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass[J]. Saudi Journal of Biological Sciences, 2015, 22(6):795-800.
    [48] TÓTH T, ZSIROS O, KIS M, GARAB G, KOVÁCS L. Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803[J]. Plant, Cell & Environment, 2012, 35(12):2075-2086.
    [49] CASSIER-CHAUVAT C, CHAUVAT F. Responses to oxidative and heavy metal stresses in cyanobacteria:recent advances[J]. International Journal of Molecular Sciences, 2014, 16(1):871-886.
    [50] HOUOT L, FLOUTIER M, MARTEYN B, MICHAUT M, PICCIOCCHI A, LEGRAIN P, AUDE JC, CASSIER-CHAUVAT C, CHAUVAT F. Cadmium triggers an integrated reprogramming of the metabolism of Synechocystis PCC6803, under the control of the Slr1738 regulator[J]. BMC Genomics, 2007, 8(1):1-16.
    [51] VERMA N, PRASAD SM. Interplay of hydrogen peroxide and nitric oxide:systemic regulation of photosynthetic performance and nitrogen metabolism in cadmium challenged cyanobacteria[J]. Physiology and Molecular Biology of Plants, 2021, 27(10):2181-2199.
    [52] VERMA N, PRASAD SM. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide[J]. Scientific Reports, 2021, 11:2893.
    [53] SUN T, XU L, WU LN, SONG ZD, CHEN L, ZHANG WW. Identification of a new target slr0946 of the response regulator Sll0649 involving cadmium tolerance in Synechocystis sp. PCC 6803[J]. Frontiers in Microbiology, 2017, 8:1582.
    [54] CONRAD TM, LEWIS NE, PALSSON BØ. Microbial laboratory evolution in the era of genome-scale science[J]. Molecular Systems Biology, 2011, 7(1):509.
    [55] KOBYLKA J, KUTH MS, MÜLLER RT, GEERTSMA ER, POS KM. AcrB:a mean, keen, drug efflux machine[J]. Annals of the New York Academy of Sciences, 2020, 1459(1):38-68.
    [56] HAREL Y, OHAD I, KAPLAN A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust[J]. Plant Physiology, 2004, 136(2):3070-3079.
    [57] CHO SH, JEONG Y, HONG SJ, LEE H, CHOI HK, KIM DM, LEE CG, CHO S, CHO BK. Different regulatory modes of Synechocystis sp. PCC 6803 in response to photosynthesis inhibitory conditions[J]. mSystems, 2021, 6(6):e00943-21.
    [58] OGAWA K, YOSHIKAWA K, MATSUDA F, TOYA Y, SHIMIZU H. Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions[J]. Journal of Bioscience and Bioengineering, 2018, 126(5):596-602.
    [59] ASADA K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:601-639.
    [60] CHAUX F, PELTIER G, JOHNSON X. A security network in PSI photoprotection:regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow[J]. Frontiers in Plant Science, 2015, 6:875.
    [61] WALKER PL, PAKRASI HB. A ubiquitously conserved cyanobacterial protein phosphatase essential for high light tolerance in a fast-growing Cyanobacterium[J]. Microbiology Spectrum, 2022, 10(4):e01008-22.
    [62] SLUCHANKO NN, SLONIMSKIY YB, SHIRSHIN EA, MOLDENHAUER M, FRIEDRICH T, MAKSIMOV EG. OCP-FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria[J]. Nature Communications, 2018, 9:3869.
    [63] BISWAS S, NIEDZWIEDZKI DM, PAKRASI HB. Introduction of cysteine-mediated quenching in the CP43 protein of photosystem II builds resilience to high-light stress in a cyanobacterium[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2022, 1863(7):148580.
    [64] BANDYOPADHYAY A, YE Z, BENEDIKTY Z, TRTILEK M, PAKRASI HB. Antenna modification leads to enhanced nitrogenase activity in a high light-tolerant Cyanobacterium[J]. mBio, 2021, 12(6):e03408-21.
    [65] DANN M, ORTIZ EM, THOMAS M, GULJAMOW A, LEHMANN M, SCHAEFER H, LEISTER D. Enhancing photosynthesis at high light levels by adaptive laboratory evolution[J]. Nature Plants, 2021, 7(5):681-695.
    [66] YOSHIKAWA K, OGAWA K, TOYA Y, AKIMOTO S, MATSUDA F, SHIMIZU H. Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803[J]. Communications Biology, 2021, 4:343.
    [67] PATHAK J, RAJNEESH, MAURYA PK, SINGH SP, HÄDER DP, SINHA RP. Cyanobacterial farming for environment friendly sustainable agriculture practices:innovations and perspectives[J]. Frontiers in Environmental Science, 2018, 6:7.
    [68] SWAPNIL P, RAI AK. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima[J]. Protoplasma, 2018, 255(3):963-976.
    [69] YANG HW, SONG JY, CHO SM, KWON HC, PAN CH, PARK YI. Genomic survey of salt acclimation-related genes in the halophilic Cyanobacterium euhalothece sp. Z-M001[J]. Scientific Reports, 2020, 10:676.
    [70] CUI JY, SUN T, LI SB, XIE YR, SONG XY, WANG FZ, CHEN L, ZHANG WW. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing mrp antiporters[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:500.
    [71] KIRSCH F, KLÄHN S, HAGEMANN M. Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential[J]. Frontiers in Microbiology, 2019, 10:2139.
    [72] CUI JY, SUN T, CHEN L, ZHANG WW. Salt-tolerant Synechococcus elongatus UTEX 2973 obtained via engineering of heterologous synthesis of compatible solute glucosylglycerol[J]. Frontiers in Microbiology, 2021, 12:650217.
    [73] VERMA E, SINGH S, NIVESHIKA, MISHRA AK. Salinity-induced oxidative stress-mediated change in fatty acids composition of cyanobacterium Synechococcus sp. PCC7942[J]. International Journal of Environmental Science and Technology, 2019, 16(2):875-886.
    [74] HU L, HE JY, DONG MJ, TANG X, JIANG PP, LEI AP, WANG JX. Divergent metabolic and transcriptomic responses of Synechocystis sp. PCC 6803 to salt stress after adaptive laboratory evolution[J]. Algal Research, 2020, 47:101856.
    [75] ADLER PR, del GROSSO SJ, PARTON WJ. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems[J]. Ecological Applications, 2007, 17(3):675-691.
    [76] LIN PC, PAKRASI HB. Engineering cyanobacteria for production of terpenoids[J]. Planta, 2019, 249(1):145-154.
    [77] KIM EM, EOM JH, UM Y, KIM Y, WOO HM. Microbial synthesis of myrcene by metabolically engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2015, 63(18):4606-4612.
    [78] CHUBUKOV V, MINGARDON F, SCHACKWITZ W, BAIDOO EEK, ALONSO-GUTIERREZ J, HU QJ, LEE TS, KEASLING JD, MUKHOPADHYAY A. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC[J]. Applied and Environmental Microbiology, 2015, 81(14):4690-4696.
    [79] QI YJ, WANG JL, LUAN GD, TAN XM, LÜ XF. Cyanobacteria cell factories for ethanol photosynthetic production:development and prospect[J]. Chinese Journal of Biotechnology, 2017, 33(6):891-909.
    [80] TURNER WJ, DUNLOP MJ. Trade-offs in improving biofuel tolerance using combinations of efflux pumps[J]. ACS Synthetic Biology, 2015, 4(10):1056-1063.
    [81] NIU XF, ZHU Y, PEI GS, WU LN, CHEN L, ZHANG WW. Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach[J]. Applied Microbiology and Biotechnology, 2015, 99(4):1845-1857.
    [82] CHEN L, WU LN, WANG JX, ZHANG WW. Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2014, 7(1):1-13.
    [83] GAO XY, SUN T, WU LN, CHEN L, ZHANG WW. Co-overexpression of response regulator genes slr1037 and sll0039 improves tolerance of Synechocystis sp. PCC 6803 to 1-butanol[J]. Bioresource Technology, 2017, 245:1476-1483.
    [84] KACZMARZYK D, ANFELT J, SÄRNEGRIM A, HUDSON EP. Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803[J]. Journal of Biotechnology, 2014, 182/183:54-60.
    [85] SUN T, PEI GS, SONG XY, CHEN L, ZHANG WW. Discovery and application of stress-responsive sRNAs in cyanobacteria[M]//Synthetic Biology of Cyanobacteria. Singapore:Springer Singapore, 2018:55-74.
    [86] SUN T, PEI GS, WANG JX, CHEN L, ZHANG WW. A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing[J]. Biotechnology for Biofuels, 2017, 10(1):1-14.
    [87] WANG YX, SHI ML, NIU XF, ZHANG XQ, GAO LJ, CHEN L, WANG JX, ZHANG WW. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803[J]. Microbial Cell Factories, 2014, 13(1):1-12.
    [88] JAISWAL D, SENGUPTA A, SENGUPTA S, MADHU S, PAKRASI HB, WANGIKAR PP. A novel Cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801[J]. Scientific Reports, 2020, 10:191.
    [89] SRIVASTAVA V, AMANNA R, ROWDEN SJL, SENGUPTA S, MADHU S, HOWE CJ, WANGIKAR PP. Adaptive laboratory evolution of the fast-growing Cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance[J]. Journal of Bioscience and Bioengineering, 2021, 131(5):491-500.
    [90] MATSUSAKO T, TOYA Y, YOSHIKAWA K, SHIMIZU H. Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution[J]. Biotechnology for Biofuels, 2017, 10(1):1-9.
    [91] JOHNSON TJ, HALFMANN C, ZAHLER JD, ZHOU RB, GIBBONS WR. Increasing the tolerance of filamentous cyanobacteria to next-generation biofuels via directed evolution[J]. Algal Research, 2016, 18:250-256.
    [92] KIYOTA H, OKUDA Y, ITO M, HIRAI MY, IKEUCHI M. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2[J]. Journal of Biotechnology, 2014, 185:1-7.
    [93] ALPER H, MOXLEY J, NEVOIGT E, FINK GR, STEPHANOPOULOS G. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805):1565-1568.
    [94] TAHARA H, MATSUHASHI A, UCHIYAMA J, OGAWA S, OHTA H. Sll0751 and Sll1041 are involved in acid stress tolerance in Synechocystis sp. PCC 6803[J]. Photosynthesis Research, 2015, 125(1/2):233-242.
    [95] JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA JA, CHARPENTIER E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
    [96] KOMOR AC, KIM YB, PACKER MS, ZURIS JA, LIU DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
    [97] WANG J, ZHAO DD, LI J, HU MZ, XIN XQ, PRICE MA, LI QY, LIU L, LI SW, ROSSER SJ, ZHANG CZ, BI CH, ZHANG XL. Helicase-AID:a novel molecular device for base editing at random genomic loci[J]. Metabolic Engineering, 2021, 67:396-402.
    [98] PAN YJ, XIA SY, DONG C, PAN HJ, CAI J, HUANG L, XU ZN, LIAN JZ. Random base editing for genome evolution in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2021, 10(10):2440-2446.
    [99] ESVELT KM, CARLSON JC, LIU DR. A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344):499-503.
    [100] MILLER SM, WANG TN, LIU DR. Phage-assisted continuous and non-continuous evolution[J]. Nature Protocols, 2020, 15(12):4101-4127.
    [101] RICHTER MF, ZHAO KT, ETON E, LAPINAITE A, NEWBY GA, THURONYI BW, WILSON C, KOBLAN LW, ZENG J, BAUER DE, DOUDNA JA, LIU DR. Author correction:phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nature Biotechnology, 2020, 38(7):901.
    [102] KOBAYASHI I, WATANABE S, KANESAKI Y, SHIMADA T, YOSHIKAWA H, TANAKA K. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942[J]. Molecular Microbiology, 2017, 104(2):260-277.
    [103] YASUDA A, INAMI D, HANAOKA M. RpaB, an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC 7942[J]. The Journal of General and Applied Microbiology, 2020, 66(2):73-79.
    [104] GUYET U, NGUYEN NA, DORÉ H, HAGUAIT J, PITTERA J, CONAN M, RATIN M, CORRE E, Le CORGUILLÉ G, BRILLET-GUÉGUEN L, HOEBEKE M, SIX C, STEGLICH C, SIEGEL A, EVEILLARD D, PARTENSKY F, GARCZAREK L. Synergic effects of temperature and irradiance on the physiology of the marine Synechococcus strain WH7803[J]. Frontiers in Microbiology, 2020, 11:1707.
    [105] SUN HL, LUAN GD, MA YF, LOU WJ, CHEN RZ, FENG DD, ZHANG SS, SUN JH, LU XF. Engineered hypermutation adapts cyanobacterial photosynthesis to combined high light and high temperature stress[J]. Nature Communications, 2023, 14:1238.
    [106] XIE YR, CHEN L, SUN T, JIANG JJ, TIAN LJ, CUI JY, ZHANG WW. A transporter Slr1512 involved in bicarbonate and pH-dependent acclimation mechanism to high light stress in Synechocystis sp. PCC 6803[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2021, 1862(1):148336.
    [107] YAO L, SHABESTARY K, BJÖRK SM, ASPLUND-SAMUELSSON J, JOENSSON HN, JAHN M, HUDSON EP. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes[J]. Nature Communications, 2020, 11:1666.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高嘉玮,朱晓飞,孙韬,陈磊,张卫文. 实验室适应性进化技术在光合蓝细菌底盘工程中的研究进展[J]. 生物工程学报, 2023, 39(8): 3075-3094

复制
分享
文章指标
  • 点击次数:479
  • 下载次数: 1367
  • HTML阅读次数: 1083
  • 引用次数: 0
历史
  • 收稿日期:2023-02-23
  • 最后修改日期:2023-03-30
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6343537位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司