基于转录组测序的宁夏枸杞不同品种果实活性成分合成差异表达基因分析
作者:
基金项目:

宁夏枸杞产业发展中心项目;国家自然科学基金(31560418);宁夏回族自治区重点研发计划(2022BBF02010);宁夏回族自治区重点研发计划重点项目(2019BBF02022);中央引导地方科技发展资金项目(2023FRD05032)


Comparative analysis of differentially expressed genes for biosynthesis of active ingredients in fruits of different cultivars of Lycium barbarum L. based on transcriptome sequencing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究不同品种宁夏枸杞果实活性成分生物合成相关基因的表达水平,筛选关键差异表达基因(differentially expressed genes,DEGs),揭示宁夏枸杞品种间活性成分含量差异的分子机制,本研究采用Illumina NovaSeq 6000高通量测序技术,对宁夏枸杞‘宁杞1号’和‘宁杞7号’青果期、转色期及成熟期果实进行转录组测序,比较2个品种果实不同发育期相关基因表达谱的变化。结果显示:转录组测序共获得811 818 178条clean reads,有121.76 Gb有效数据。‘宁杞1号’和‘宁杞7号’在青果期、转色期和成熟期差异表达基因分别有2 827、2 552和2 311个;分别有2 153、2 050和1 825个差异基因在基因本体论(gene ontology,GO)、京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)富集分析和同源蛋白簇(clusters of orthologous groups of proteins,KOG)分析等6个数据库中被成功注释。青果期、转色期和成熟期果实的差异表达基因,在GO数据库分别有1 307、865和624个被富集到生物学过程、细胞组分及分子功能3个部分中;KEGG通路富集结果均集中在代谢途径、次生代谢物生物合成和植物-病原互作过程;在KOG数据库,3个发育期分别注释了1 775、1 751和1 541个差异表达基因。对注释的基因进行PubMed数据库检索,在青果期、转色期和成熟期分别筛选到与枸杞活性成分合成相关的差异表达基因18、26和24个,这些基因主要参与类胡萝卜素、类黄酮、萜类、生物碱和维生素等代谢途径。选取7个差异表达基因进行RT-qPCR验证,结果与转录组测序数据表达趋势一致。本研究从转录水平为不同品种宁夏枸杞活性成分含量差异提供了初步证据,为进一步挖掘枸杞活性成分生物合成的关键基因及解析其表达调控机制提供了研究基础。

    Abstract:

    To explore the differentially expressed genes (DEGs) related to biosynthesis of active ingredients in wolfberry fruits of different varieties of Lycium barbarum L. and reveal the molecular mechanism of the differences of active ingredients, we utilized Illumina NovaSeq 6000 high-throughput sequencing technology to conduct transcriptome sequencing on the fruits of ‘Ningqi No.1’ and ‘Ningqi No.7’ during the green fruit stage, color turning stage and maturity stage. Subsequently, we compared the profiles of related gene expression in the fruits of the two varieties at different development stages. The results showed that a total of 811 818 178 clean reads were obtained, resulting in 121.76 Gb of valid data. There were 2 827, 2 552 and 2 311 DEGs obtained during the green fruit stage, color turning stage and maturity stage of ‘Ningqi No. 1’ and ‘Ningqi No. 7’, respectively, among which 2 153, 2 050 and 1 825 genes were annotated in six databases, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and clusters of orthologous groups of proteins (KOG). In GO database, 1 307, 865 and 624 DEGs of green fruit stage, color turning stage and maturity stage were found to be enriched in biological processes, cell components and molecular functions, respectively. In the KEGG database, the DEGs at three developmental stages were mainly concentrated in metabolic pathways, biosynthesis of secondary metabolites and plant-pathogen interaction. In KOG database, 1 775, 1 751 and 1 541 DEGs were annotated at three developmental stages, respectively. Searching the annotated genes against the PubMed database revealed 18, 26 and 24 DEGs related to the synthesis of active ingredients were mined at the green fruit stage, color turning stage and maturity stage, respectively. These genes are involved in carotenoid, flavonoid, terpenoid, alkaloid, vitamin metabolic pathways, etc. Seven DEGs were verified by RT-qPCR, which showed consistent results with transcriptome sequencing. This study provides preliminary evidences for the differences in the content of active ingredients in different Lycium barbarum L. varieties from the transcriptional level. These evidences may facilitate further exploring the key genes for active ingredients biosynthesis in Lycium barbarum L. and analyzing their expression regulation mechanism.

    参考文献
    [1] 及华, 王琳, 张海新, 李运朝, 李洪涛. 药食同源植物:枸杞[J]. 现代农村科技, 2021(7):125. JI H, WANG L, ZHANG HX, LI YC, LI HT. Lycium barbarum L., a medicinal and edible plant[J]. Xiandai Nongcun Keji, 2021(7):125(in Chinese).
    [2] 刘兰英, 康迎春, 李晓莺, 李越鲲, 张曦燕, 曹有龙. 枸杞果实不同发育阶段主要活性成分变化研究[J]. 食品研究与开发, 2016, 37(3):1-4. LIU LY, KANG YC, LI XY, LI YK, ZHANG XY, CAO YL. Bioactive compounds of wolfberry fruits at different development stages[J]. Food Research and Development, 2016, 37(3):1-4(in Chinese).
    [3] 秦垦, 戴国礼, 曹有龙, 焦恩宁, 唐慧锋, 闫亚美, 何军, 李瑞鹏. 制干用枸杞新品种‘宁杞7号’[J]. 园艺学报, 2012, 39(11):2331-2332. QIN K, DAI GL, CAO YL, JIAO EN, TANG HF, YAN YM, HE J, LI RP. A new wolfberry cultivar ‘Ningqi 7’[J]. Acta Horticulturae Sinica, 2012, 39(11):2331-2332(in Chinese).
    [4] 张晓娟, 王有科. 枸杞6个品种果实品质对比[J]. 安徽农业科学, 2015, 43(10):89-90. ZHANG XJ, WANG YK. Comparison on the fruit quality of six varieties of Lycium barbarum L.[J]. Journal of Anhui Agricultural Sciences, 2015, 43(10):89-90(in Chinese).
    [5] 包雪梅, 胡娜, 宗渊, 王洪伦. 转录组学挖掘黑果枸杞中花青素生物合成代谢关键bHLH调控基因[J/OL]. 分子植物育种, 2021:1-20. (2021-07-02). https://kns.cnki.net/kcms/detail/46.1068.S.20210702.1559.007.html. BAO XM, HU N, ZONG Y, WANG HL. Transcriptomics mining the key bHLH regulatory genes for anthocyanin biosynthesis of Lycium ruthenicum Murray[J/OL]. Molecular Plant Breeding, 2021:1-20. (2021-07-02). https://kns.cnki.net/kcms/detail/46.1068.S.20210702.1559.007.html (in Chinese).
    [6] WANG CP, DONG Y, ZHU LZ, WANG LB, YAN L, WANG MZ, ZHU Q, NAN XX, LI YH, LI J. Comparative transcriptome analysis of two contrasting wolfberry genotypes during fruit development and ripening and characterization of the LrMYB1 transcription factor that regulates flavonoid biosynthesis[J]. BMC Genomics, 2020, 21(1):295.
    [7] 刘俭, 张波, 秦垦, 黄婷, 周璇, 戴国礼. 不同枸杞种质间品质比较与分析[J]. 江西农业学报, 2015, 27(1):53-56. LIU J, ZHANG B, QIN K, HUANG T, ZHOU X, DAI GL. Comparison and analysis of fruit quality of different Chinese wolfberry germplasms[J]. Acta Agriculturae Jiangxi, 2015, 27(1):53-56(in Chinese).
    [8] KIM D, LANGMEAD B, SALZBERG SL. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4):357-360.
    [9] PERTEA M, PERTEA GM, ANTONESCU CM, CHANG TC, MENDELL JT, SALZBERG SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3):290-295.
    [10] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
    [11] VARET H, BRILLET-GUÉGUEN L, COPPÉE JY, DILLIES MA. SARTools:a DESeq2-and EdgeR-based R pipeline for comprehensive differential analysis of RNA-seq data[J]. PLoS One, 2016, 11(6):e0157022.
    [12] ISLAM T, YU XM, BADWAL TS, XU BJ. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum)[J]. Chemistry Central Journal, 2017, 11(1):59.
    [13] 李建学, 樊祥富, 刘学龙, 张晓博, 王鹏君. 枸杞化学成分及其药理作用的研究进展[J]. 食品安全导刊, 2016(24):75. LI JX, FAN XF, LIU XL, ZHANG XB, WANG PJ. Research progress on chemical constituents and pharmacological effects of Lycium barbarum[J]. China Food Safety Magazine, 2016(24):75(in Chinese).
    [14] 王璐, 凌曦, 阿丽亚·艾木都拉, 张泽文, 穆凯丽, 戴江红. 黄酮类化合物和类胡萝卜素作为果蔬摄入生物标志物的研究进展[J]. 职业与健康, 2022, 38(10):1436-1440. WANG L, LING X, ALIYA·Aimudula, ZHANG ZW, MU KL, DAI JH. Recent advances in flavonoids and carotenoids as biomarkers of fruit and vegetable intake[J]. Occupation and Health, 2022, 38(10):1436-1440(in Chinese).
    [15] WELLER P, BREITHAUPT DE. Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2003, 51(24):7044-7049.
    [16] JI J, WANG G, WANG JH, WANG P. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on β-carotene production in transgenic tobacco[J]. Biotechnology Letters, 2009, 31(2):305-312.
    [17] ZHOU D, SHEN YH, ZHOU P, FATIMA M, LIN JS, YUE JJ, ZHANG XT, CHEN LY, MING R. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during Papaya fruit ripening[J]. Horticulture Research, 2019, 6:80.
    [18] TOLEDO-ORTIZ G, HUQ E, RODRÍGUEZ-CONCEPCIÓN M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25):11626-11631.
    [19] ELLISON S, SENALIK D, BOSTAN H, IORIZZO M, SIMON P. Fine mapping, transcriptome analysis, and marker development for Y2, the gene that conditions β-carotene accumulation in carrot (Daucus carota L.)[J]. G3(Bethesda, Md), 2017, 7(8):2665-2675.
    [20] BRANDI F, BAR E, MOURGUES F, HORVÁTH G, TURCSI E, GIULIANO G, LIVERANI A, TARTARINI S, LEWINSOHN E, ROSATI C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology, 2011, 11:24.
    [21] AMPOMAH-DWAMENA C, DEJNOPRAT S, LEWIS D, SUTHERLAND P, VOLZ RK, ALLAN AC. Metabolic and gene expression analysis of apple (Malus ×domestica) carotenogenesis[J]. Journal of Experimental Botany, 2012, 63(12):4497-4511.
    [22] AMPOMAH-DWAMENA C, THRIMAWITHANA AH, DEJNOPRAT S, LEWIS D, ESPLEY RV, ALLAN AC. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation[J]. The New Phytologist, 2019, 221(1):309-325.
    [23] FU CC, CHEN HJ, GAO HY, LU Y, HAN C, HAN YC. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis[J]. Journal of the Science of Food and Agriculture, 2020, 100(12):4442-4448.
    [24] WU MB, XU X, HU XW, LIU YD, CAO HH, CHAN H, GONG ZH, YUAN YJ, LUO YQ, FENG BH, LI ZG, DENG W. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit[J]. Plant Physiology, 2020, 183(3):854-868.
    [25] LIU HM, LIU ZJ, WU Y, ZHENG LM, ZHANG GF. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear[J]. International Journal of Molecular Sciences, 2021, 22(16):8441.
    [26] 朱雪冰. 黑枸杞花青素合成代谢相关基因克隆及再生体系建立[D]. 西宁:青海师范大学硕士学位论文, 2017. ZHU XB. Cloning for anthocyanin anabolism genes of Lycium ruthenicum Murr and establishment of regeneration system[D]. Xining:Master's Thesis of Qinghai Normal University, 2017(in Chinese).
    [27] LIN Y, WANG YH, LI B, TAN H, LI DN, LI L, LIU X, HAN JC, MENG XJ. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry[J]. Plant Physiology and Biochemistry:PPB, 2018, 127:561-572.
    [28] 苏全胜, 王爽, 孙玉强, 梅俊, 柯丽萍. 植物原花青素生物合成及调控研究进展[J]. 中国细胞生物学学报, 2021, 43(1):219-229. SU QS, WANG S, SUN YQ, MEI J, KE LP. Advances in biosynthesis and regulation of plant proanthocyanidins[J]. Chinese Journal of Cell Biology, 2021, 43(1):219-229(in Chinese).
    [29] HE F, PAN QH, SHI Y, DUAN CQ. Biosynthesis and genetic regulation of proanthocyanidins in plants[J]. Molecules (Basel, Switzerland), 2008, 13(10):2674-2703.
    [30] YAN HL, PEI XN, ZHANG H, LI X, ZHANG XX, ZHAO MH, CHIANG VL, SEDEROFF RR, ZHAO XY. MYB-mediated regulation of anthocyanin biosynthesis[J]. International Journal of Molecular Sciences, 2021, 22(6):3103.
    [31] WANG LJ, LU WX, RAN LY, DOU LW, YAO S, HU J, FAN D, LI CF, LUO KM. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa[J]. The Plant Journal:for Cell and Molecular Biology, 2019, 99(4):733-751.
    [32] WADA T, KUNIHIRO A, TOMINAGA-WADA R. Arabidopsis CAPRICE (MYB) and GLABRA3(bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis[J]. PLoS One, 2014, 9(9):e109093.
    [33] WANG LH, TANG W, HU YW, ZHANG YB, SUN JQ, GUO XH, LU H, YANG Y, FANG CB, NIU XL, YUE JY, FEI ZJ, LIU YS. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. The Plant Journal:for Cell and Molecular Biology, 2019, 99(2):359-378.
    [34] SUN CL, DENG L, DU MM, ZHAO JH, CHEN Q, HUANG TT, JIANG HL, LI CB, LI CY. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh[J]. Molecular Plant, 2020, 13(1):42-58.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘雪霞,范文强,焦慧慧,高寒,唐建宁,朱金忠,岳思君,郑蕊. 基于转录组测序的宁夏枸杞不同品种果实活性成分合成差异表达基因分析[J]. 生物工程学报, 2023, 39(7): 3015-3036

复制
分享
文章指标
  • 点击次数:287
  • 下载次数: 1048
  • HTML阅读次数: 981
  • 引用次数: 0
历史
  • 收稿日期:2022-10-11
  • 录用日期:2023-01-16
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第5992279位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司