新型水果空心泡叶绿体基因组特征及其系统发育分析
作者:
基金项目:

国家自然科学基金(31860225);贵州省科技计划项目(黔科合平台人才[2018]5781号,黔科合基础[2019]1408号)


Characteristics and phylogenetic analysis of chloroplast genome of a new type of fruit Rubus rosaefolius
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究空心泡(Rubus rosaefolius)叶绿体基因组特征,本研究以空心泡为试验材料,采用Illumina NovaSeq平台进行高通量测序,获得空心泡完整的叶绿体基因组序列,并进行空心泡叶绿体基因序列特征和系统发育分析。结果表明:空心泡的完整叶绿体基因组总长度为155 650 bp,具有典型的四分体结构,包括2个反向重复序列(各25 748 bp)、1个大拷贝区(85 443 bp)、1个小拷贝区(18 711 bp)。空心泡叶绿体全基因组共鉴定出131个基因,包括86个蛋白质编码基因、37个tRNA基因和8个rRNA基因,全基因组的GC含量为36.9%。空心泡叶绿体基因组包含47个散在重复序列、72个简单重复序列(simple sequence repeating,SSR)位点,密码子偏好性为亮氨酸密码子,偏好使用A/U结尾的密码子。系统发育分析表明,空心泡与小叶悬钩子(Rubus taiwanicola)亲缘关系最近,其次是能高悬钩子(Rubus rubroangustifolius)和腺萼悬钩子(Rubus glandulosopunctatus)。空心泡的叶绿体基因组特征及其系统发育分析,为空心泡的遗传多样性研究和叶绿体开发利用提供理论依据。

    Abstract:

    The genomic DNA of Rubus rosaefolius was extracted and sequenced by Illumina NovaSeq platform to obtain the complete chloroplast genome sequence, and the sequence characteristics and phylogenetic analysis of chloroplast genes were carried out. The results showed that the complete chloroplast genome of the R. rosaefolius was 155 650 bp in length and had a typical tetrad structure, including two reverse repeats (25 748 bp each), a large copy region (85 443 bp) and a small copy region (18 711 bp). A total of 131 genes were identified in the whole genome of R. rosaefolius chloroplast, including 86 protein coding genes, 37 tRNA genes and 8 rRNA genes. The GC content of the whole genome was 36.9%. The genome of R. rosaefolius chloroplast contains 47 scattered repeats and 72 simple sequence repeating (SSR) loci. The codon preference is leucine codon, and the codon at the end of A/U is preferred. Phylogenetic analysis showed that R. rosaefolius had the closest relationship with R. taiwanicola, followed by R. rubraangustifolius and R. glandulosopunctatus. The chloroplast genome characteristics and phylogenetic analysis of R. rosaefolius provide a theoretical basis for its genetic diversity research and chloroplast development and utilization.

    参考文献
    [1] LIU HZ, YE H, ZHANG NY, MA JY, WANG JT, HU GJ, LI MD, ZHAO P. Comparative analyses of chloroplast genomes provide comprehensive insights into the adaptive evolution of Paphiopedilum (Orchidaceae)[J]. Horticulturae, 2022, 8(5):391.
    [2] 热伊汉古丽·图尔迪, 慕丽红, 田新民. 扁果草叶绿体基因组特征分析[J]. 生物工程学报, 2022, 38(8):2999-3013. TURDI R, MU LH, TIAN XM. Characteristics of the chloroplast genome of Isopyrum anemonoides[J]. Chinese Journal of Biotechnology, 2022, 38(8):2999-3013(in Chinese).
    [3] DU XY, ZENG T, FENG Q, HU LJ, LUO X, WENG QB, HE JF, ZHU B. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species[J]. Gene, 2020, 731:144340.
    [4] 欧金梅, 杨亚湉, 钱程程, 吴瑞, 王瑞, 黄璐琦. 基于叶绿体基因的药用梅群体遗传学研究[J]. 中草药, 2022, 53(17):5469-5475. OU JM, YANG YT, QIAN CC, WU R, WANG R, HUANG LQ. Analysis of population genetics of medicinal plum based on chloroplast gene[J]. Chinese Traditional and Herbal Drugs, 2022, 53(17):5469-5475(in Chinese).
    [5] SHINOZAKI K, OHME M, TANAKA M, WAKASUGI T, HAYASHIDA N, MATSUBAYASHI T, ZAITA N, CHUNWONGSE J, OBOKATA J, YAMAGUCHI-SHINOZAKI K, OHTO C, TORAZAWA K, MENG BY, SUGITA M, DENO H, KAMOGASHIRA T, YAMADA K, KUSUDA J, TAKAIWA F, KATO A, et al. The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression[J]. The EMBO Journal, 1986, 5(9):2043-2049.
    [6] 郑祎, 张卉, 王钦美, 高悦, 张志宏, 孙玉新. 大花君子兰叶绿体基因组及其特征[J]. 园艺学报, 2020, 47(12):2439-2450. ZHENG Y, ZHANG H, WANG QM, GAO Y, ZHANG ZH, SUN YX. Complete chloroplast genome sequence of Clivia miniata and its characteristics[J]. Acta Horticulturae Sinica, 2020, 47(12):2439-2450(in Chinese).
    [7] RASHEED S, ZAIDI S, AZIM MK. The chloroplast genome sequence of Momordica charantia L. (bitter gourd)[J]. Gene Reports, 2020, 21:100963.
    [8] MO ZH, LOU WR, CHEN YQ, JIA XD, ZHAI M, GUO ZR, XUAN JP. The chloroplast genome of Carya illinoinensis:genome structure, adaptive evolution, and phylogenetic analysis[J]. Forests, 2020, 11(2):207.
    [9] YANG AH, LIU SJ, LIU TY, HU M, ZHONG YD, LIU LP, YU FX. The complete chloroplast genome sequence of Actinidia styracifolia C. F. Liang[J]. Mitochondrial DNA Part B, 2020, 5(1):90-91.
    [10] QUADROS APO, ALMEIDA LM, PETREANU M, NIERO R, ROSA PCP, SAWAYA ACHF, MANTOVANI MS, GAIVÃO IOM, MAISTRO EL. Risk assessment via genotoxicity, metabolism, apoptosis, and cell growth effects in a HepG2/C3A cell line upon treatment with Rubus rosifolius (Rosaceae) leaves extract[J]. Journal of Toxicology and Environmental Health Part A, 2020, 83(13/14):495-508.
    [11] 刘世彪, 吕江明, 孙蓓育, 蒋孝波, 张世鑫, 彭小列. 三种野生莓类果实的营养成分及蛇莓急性毒性实验[J]. 营养学报, 2009, 31(3):307-309. LIU SB, LV JM, SUN BY, JIANG XB, ZHANG SX, PENG XL. The nutritional components of wild fruits Rubus corchorifolius, R. rosaefolius, Duchesnea indica and acute toxicity of D. indica fruit in mice[J]. Acta Nutrimenta Sinica, 2009, 31(3):307-309(in Chinese).
    [12] BAGATTOLI PCD, CIPRIANI DC, MARIANO LNB, CORREA M, WAGNER TM, NOLDIN VF, FILHO VC, NIERO R. Phytochemical, antioxidant and anticancer activities of extracts of seven fruits found in the southern Brazilian flora[J]. Indian Journal of Pharmaceutical Sciences, 2016, 78(1):34-40.
    [13] de SOUZA P, BOEING T, SOMENSI LB, CECHINEL-ZANCHETT CC, BASTOS JK, PETREANU M, NIERO R, CECHINEL-FILHO V, da SILVA LM, de ANDRADE SF. Diuretic effect of extracts, fractions and two compounds 2α,3β,19α-trihydroxy-urs-12-en-28-oic acid and 5-hydroxy-3,6,7,8,4'-pentamethoxyflavone from Rubus rosaefolius Sm. (Rosaceae) leaves in rats[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390(4):351-360.
    [14] OLIVEIRA BD, RODRIGUES AC, CARDOSO BMI, RAMOS ALCC, BERTOLDI MC, TAYLOR JG, da CUNHA LR, PINTO UM. Antioxidant, antimicrobial and anti-quorum sensing activities of Rubus rosaefolius phenolic extract[J]. Industrial Crops and Products, 2016, 84:59-66.
    [15] PETREANU M, FERREIRA EK, SAGAZ APM, VENDRAMINI-COSTA DB, RUIZ ALTG, de CARVALHO JE, CAMPOS A, CECHINEL FILHO V, DELLE MONACHE F, NIERO R. Uncommon trimethoxylated flavonol obtained from Rubus rosaefolius leaves and its antiproliferative activity[J]. Evidence-Based Complementary and Alternative Medicine:ECAM, 2015, 2015:341216.
    [16] 陈炳华, 刘剑秋, 黄惠玲, 许春琼. 空心泡红色素的性质及其稳定性研究[J]. 福建师范大学学报(自然科学版), 2002, 18(3):77-83. CHEN BH, LIU JQ, HUANG HL, XU CQ. Basic properties of Rubus rosaefolius red pigment and its stability[J]. Journal of Fujian Teachers University (Natural Science), 2002, 18(3):77-83(in Chinese).
    [17] POREBSKI S, BAILEY LG, BAUM BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1):8-15.
    [18] PATEL RK, JAIN M. NGS QC toolkit:a toolkit for quality control of next generation sequencing data[J]. PLoS One, 2012, 7(2):e30619.
    [19] BANKEVICH A, NURK S, ANTIPOV D, GUREVICH AA, DVORKIN M, KULIKOV AS, LESIN VM, NIKOLENKO SI, PHAM S, PRJIBELSKI AD, PYSHKIN AV, SIROTKIN AV, VYAHHI N, TESLER G, ALEKSEYEV MA, PEVZNER PA. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology:a Journal of Computational Molecular Cell Biology, 2012, 19(5):455-477.
    [20] QU XJ, MOORE MJ, LI DZ, YI TS. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes[J]. Plant Methods, 2019, 15:50.
    [21] GREINER S, LEHWARK P, BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research, 2019, 47(W1):W59-W64.
    [22] SHIELDS DC, SHARP PM. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases[J]. Nucleic Acids Research, 1987, 15(19):8023-8040.
    [23] LOHSE M, DRECHSEL O, KAHLAU S, BOCK R. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets[J]. Nucleic Acids Research, 2013, 41(W1):W575-W581.
    [24] THIEL T, MICHALEK W, VARSHNEY R, GRANER A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetics, 2003, 106(3):411-422.
    [25] AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17):3030-3031.
    [26] KATOH K, STANDLEY DM. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4):772-780.
    [27] KALYAANAMOORTHY S, MINH BQ, WONG TKF, von HAESELER A, JERMIIN LS. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6):587-589.
    [28] STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.
    [29] YU JJ, FU J, FANG YP, XIANG J, DONG HJ. Complete chloroplast genomes of Rubus species (Rosaceae) and comparative analysis within the genus[J]. BMC Genomics, 2022, 23(1):32.
    [30] 徐玉芬. 中国悬钩子属叶绿体系统发育基因组学研究[D]. 广州:仲恺农业工程学院硕士学位论文, 2020. XU YF. Chloroplast phylogenomics of Rubus in China[D]. Guangzhou:Master's Thesis of Zhongkai University of Agriculture and Engineering, 2020(in Chinese).
    [31] 赵文植, 董章宏, 辛静, 沈伟祥, 王飞, 徐建, 常晓勇, 辛培尧. 高粱泡叶绿体基因组特征分析[J]. 云南农业大学学报(自然科学), 2022, 37(3):435-446. ZHAO WZ, DONG ZH, XIN J, SHEN WX, WANG F, XU J, CHANG XY, XIN PY. Analysis on the chloroplast genome characteristics of Rubus lambertianus Ser[J]. Journal of Yunnan Agricultural University (Natural Science), 2022, 37(3):435-446(in Chinese).
    [32] YANG JY, PAK JH, KIM SC. The complete chloroplast genome sequence of Korean raspberry Rubus crataegifolius (Rosaceae)[J]. Mitochondrial DNA Part B, 2017, 2(2):793-794.
    [33] ZHANG GY, LIU YR, HAI P. The complete chloroplast genome of Tibetan medicinal plant Rubus phoenicolasius Maxim[J]. Mitochondrial DNA Part B, 2021, 6(3):886-887.
    [34] WANG QR, HUANG ZR, GAO CS, GE YQ, CHENG RB. The complete chloroplast genome sequence of Rubus hirsutus Thunb. and a comparative analysis within Rubus species[J]. Genetica, 2021, 149(5):299-311.
    [35] WANG WC, CHEN SY, ZHANG XZ. Whole-genome comparison reveals divergent IR borders and mutation hotspots in chloroplast genomes of herbaceous bamboos (Bambusoideae:Olyreae)[J]. Molecules (Basel, Switzerland), 2018, 23(7):1537.
    [36] PARK I, YANG S, CHOI G, KIM WJ, MOON BC. The complete chloroplast genome sequences of Aconitum pseudolaeve and Aconitum longecassidatum, and development of molecular markers for distinguishing species in the Aconitum subgenus lycoctonum[J]. Molecules (Basel, Switzerland), 2017, 22(11):2012.
    [37] YAN C, DU JC, GAO L, LI Y, HOU XL. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.):genome organization, adaptive evolution and phylogenetic relationships in Cardamineae[J]. Gene, 2019, 699:24-36.
    [38] CUSARO CM, GRAZIOLI C, ZAMBUTO F, CAPELLI E, BRUSONI M. An improved method for assessing simple sequence repeat (SSR) variation in Echinochloa crus-galli (L.) P. beauv (barnyardgrass)[J]. Diversity, 2021, 14(1):3.
    [39] 张雨, 苏旭, 刘玉萍, 刘涛, 郑长远, 苏丹丹, 王亚男, 吕婷. 喜马红景天叶绿体基因组特征及其系统发育分析[J]. 植物研究, 2022, 42(4):602-612. ZHANG Y, SU X, LIU YP, LIU T, ZHENG CY, SU DD, WANG YN, LÜ T. Characteristics of complete chloroplast genome and phylogenetic analysis of Rhodiola himalensis (Crassulaceae)[J]. Bulletin of Botanical Research, 2022, 42(4):602-612(in Chinese).
    [40] DU ZY, LU K, ZHANG K, HE YM, WANG HT, CHAI GQ, SHI JG, DUAN YZ. The chloroplast genome of Amygdalus L. (Rosaceae) reveals the phylogenetic relationship and divergence time[J]. BMC Genomics, 2021, 22(1):645.
    [41] WU LW, CUI YX, WANG Q, XU ZC, WANG Y, LIN YL, SONG JY, YAO H. Identification and phylogenetic analysis of five Crataegus species (Rosaceae) based on complete chloroplast genomes[J]. Planta, 2021, 254(1):14.
    [42] 杨芮. 三个树莓类资源叶绿体基因组比较分析[D]. 雅安:四川农业大学硕士学位论文, 2019. YANG R. Complete chloroplast genome and comparative analyses of three bramble resources (Rubus)[D]. Yaan:Master's Thesis of Sichuan Agricultural University, 2019(in Chinese).
    [43] LIU SX, XUE DY, CHENG R, HAN HX. The complete mitogenome of Apocheima cinerarius (Lepidoptera:Geometridae:Ennominae) and comparison with that of other lepidopteran insects[J]. Gene, 2014, 547(1):136-144.
    [44] 王婧, 王天翼, 王罗云, 张建国, 曾艳飞. 沙枣叶绿体全基因组序列及其使用密码子偏性分析[J]. 西北植物学报, 2019, 39(9):1559-1572. WANG J, WANG TY, WANG LY, ZHANG JG, ZENG YF. Assembling and analysis of the whole chloroplast genome sequence of Elaeagnus angustifolia and its codon usage bias[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(9):1559-1572(in Chinese).
    [45] 唐钰莹, 刘阳轩, 潘婷, 魏明, 马欣荣, 汪松虎. 叶绿体蛋白CV调节质体逆向信号的研究[J]. 植物生理学报, 2020, 56(7):1553-1560. TANG YY, LIU YX, PAN T, WEI M, MA XR, WANG SH. Study on chloroplast protein CV regulating plastid retrograde signaling[J]. Plant Physiology Journal, 2020, 56(7):1553-1560(in Chinese).
    [46] FENG Y, GAO XF, ZHANG JY, JIANG LS, LI X, DENG HN, LIAO M, XU B. Complete chloroplast genomes provide insights into evolution and phylogeny of Campylotropis (Fabaceae)[J]. Frontiers in Plant Science, 2022, 13:895543.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴永飞,杨雪莲,王霞,颜丽,张万萍. 新型水果空心泡叶绿体基因组特征及其系统发育分析[J]. 生物工程学报, 2023, 39(7): 2939-2953

复制
分享
文章指标
  • 点击次数:184
  • 下载次数: 856
  • HTML阅读次数: 539
  • 引用次数: 0
历史
  • 收稿日期:2022-10-16
  • 录用日期:2023-01-07
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第6145564位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司