云南栘[木衣]MADS-box基因家族鉴定与表达分析
作者:
基金项目:

国家自然科学基金(32060350);云南省万人计划青年拔尖人才专项(YNWR-QNBJ-2020-230)


Identification and expression analysis of MADS-box gene family in Docynia delavayi (Franch.) Schneid.
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    MADS-box基因家族是一类重要的转录因子家族,在调控植物的生长发育、信号传导等过程中发挥着重要作用。为研究云南栘[木衣][Docynia delavayi(Franch.) Schneid.]MADS-box基因家族的特征及其在种子不同萌发时期的表达情况,本研究以云南栘[木衣]不同萌发时期的种苗为材料,在转录组测序的基础上利用生物信息学方法从云南栘[木衣]转录组数据库中筛选MADS-box转录因子,分析其理化性质、蛋白保守基序、系统进化及表达模式,并采用实时荧光定量PCR (quantitative real-time polymerase chain reaction,qRT-PCR)实验验证云南栘[木衣]MADS-box基因家族成员在种子不同萌发时期的表达情况。在云南栘[木衣]转录组数据中共鉴定出81个MADS-box转录因子,其编码的氨基酸序列分子量分布范围在6 211.34–173 512.77 Da之间,等电点介于5.21—10.97之间。系统进化分析显示,81个云南栘[木衣]MADS-box基因可分为15个亚组,其中DdMADS27DdMADS42DdMADS45DdMADS46DdMADS53DdMADS61DdMADS76DdMADS77DdMADS79可能参与对云南栘[木衣]胚珠的发育调控。结合云南栘[木衣]种子转录组数据与qRT-PCR实验分析发现,DdMADS25DdMADS42可能参与调控种子发育,DdMADS37DdMADS38可能对种子休眠有负调控作用。前人报道中MIKC*亚组多参与调控花器官发育,本研究首次发现MIKC*亚组的转录因子在种子萌发前期具有较高表达量,由此推测MIKC*亚组在种子萌发过程中起到调控作用。为验证该推测准确性,挑选了MIKC*亚组的DdMADS60DdMADS75进行qRT-PCR实验,实验结果与转录组测序的表达趋势一致。本研究可为进一步从分子进化角度研究云南栘[木衣]MADS-box基因家族的生物学功能提供参考。

    Abstract:

    MADS-box gene family is a significant transcription factor family that plays a crucial role in regulating plant growth, development, signal transduction, and other processes. In order to study the characteristics of MADS-box gene family in Docynia delavayi (Franch.) Schneid. and its expression during different stages of seed germination, this study used seedlings at different stages of germination as materials and screened MADS-box transcription factors from the transcriptome database of D. delavayi using bioinformatics methods based on transcriptome sequencing. The physical and chemical properties, protein conservative motifs, phylogenetic evolution, and expression patterns of the MADS-box transcription factors were analyzed. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of MADS-box gene family members during different stages of seed germination in D. delavayi. The results showed that 81 genes of MADS-box gene family were identified from the transcriptome data of D. delavayi, with the molecular weight distribution ranged of 6 211.34-173 512.77 Da and the theoretical isoelectric point ranged from 5.21 to 10.97. Phylogenetic analysis showed that the 81 genes could be divided into 15 subgroups, among which DdMADS27, DdMADS42, DdMADS45, DdMADS46, DdMADS53, DdMADS61, DdMADS76, DdMADS77 and DdMADS79 might be involved in the regulation of ovule development in D. delavayi. The combination of the transcriptome data and the qRT-PCR analysis results of D. delavayi seeds indicated that DdMADS25 and DdMADS42 might be involved in the regulation of seed development, and that DdMADS37 and DdMADS38 might have negative regulation effects on seed dormancy. Previous studies have reported that the MIKC* subgroup is mainly involved in regulating flower organ development. For the first time, we found that the transcription factors of the MIKC* subgroup exhibited a high expression level at the early stage of seed germination, so we speculated that the MIKC* subgroup played a regulatory role in the process of seed germination. To verify the accuracy of this speculation, we selected DdMADS60 and DdMADS75 from the MIKC* subgroup for qRT-PCR experiments, and the experimental results were consistent with the expression trend of transcriptome sequencing. This study provides a reference for further research on the biological function of D.delavayi MADS-box gene family from the perspective of molecular evolution.

    参考文献
    [1] 王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法[J]. 生物技术通讯, 2013, 24(1):118-123. WANG CQ, KONG WW, LI J. Current research method of transcription factors in plants[J]. Letters in Biotechnology, 2013, 24(1):118-123(in Chinese).
    [2] THEIßEN G, KIM JT, SAEDLER H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes[J]. Journal of Molecular Evolution, 1996, 43(5):484-516.
    [3] 姚琦园, 李纷芬, 张林成, 周升恩. 植物MADS-box转录因子参与调控非生物胁迫的研究进展[J]. 江西农业学报, 2018, 30(5):73-79. YAO QY, LI FF, ZHANG LC, ZHOU SE. Research progress in MADS-box transcription factors involved in regulation of abiotic stress of plants[J]. Acta Agriculturae Jiangxi, 2018, 30(5):73-79(in Chinese).
    [4] 郭鹏. 十字花科MADS-box基因家族系统进化分析[D]. 福州:福建农林大学硕士学位论文, 2018. GUO P. The phylogenetic analysis of MADS-box gene family in Brassiceae plants[D]. Fuzhou:Master's Thesis of Fujian Agriculture and Forestry University, 2018(in Chinese).
    [5] ANUSAKP, DITTA GARY S, BETHS, LILJEGREN SARAH J, ELVIRAB, ELLENW, YANOFSKY MARTIN F. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944):85-8.
    [6] HENSCHELK, KOFUJIR, HASEBEM, SAEDLER H, MÜNSTER T, THEISSENG. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens[J]. Molecular Biology and Evolution, 2002, 19(6):801-814.
    [7] SHORE P, SHARROCKS AD. The MADS-box family of transcription factors[J]. European Journal of Biochemistry, 1995, 229(1):11-13.
    [8] PARENICOVÁL, de FOLTER S, KIEFFER M, HORNER DS, FAVALLI C, BUSSCHER J, COOK HE, INGRAM RM, KATER MM, DAVIES B, ANGENENT GC, COLOMBO L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world[J]. The Plant Cell, 2003, 15(7):1538-1551.
    [9] RIECHMANN JL, KRIZEK BA, MEYEROWITZ EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10):4793-4798.
    [10] GRAMZOW L, THEISSEN G. A hitchhiker's guide to the MADS world of plants[J]. Genome Biology, 2010, 11(6):1-11.
    [11] BECKER A, THEISSEN G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003, 29(3):464-489.
    [12] LIGHTFOOT DJ, MALONE KM, TIMMIS JN, ORFORD SJ. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells[J]. Molecular Genetics and Genomics, 2008, 279(1):75-85.
    [13] 刘翔, 左开井, 黎颖, 许洁婷, 陈雨, 张飞, 孙小芬, 唐克轩. 植物花器官发育模型及相关转录因子的研究[J]. 扬州大学学报(农业与生命科学版), 2009, 30(4):100-104. LIU X, ZUO KJ, LI Y, XU JT, CHEN Y, ZHANG F, SUN XF, TANG KX. The advances in the model of floral organ development and the transcriptional factors related to flower development[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2009, 30(4):100-104(in Chinese).
    [14] 吴征镒. 云南种子植物名录[M]. 昆明:云南人民出版社, 1984. WU ZY. List of Seed Plants in Yunnan[M]. Kunming:Yunnan People's Publishing House, 1984(in Chinese).
    [15] 李福寿, 李美珍, 李剑. 云南多依的生物学特性和物候特征研究[J]. 中国园艺文摘, 2010(4):2. LI FS, LI MZ, LI J. Study of biological characteristics of Docynia delavayi (Fr.) Schneid.[J]. Chinese Horticulture Abstracts, 2010(4):2(in Chinese).
    [16] 张新洛, 彭劲谕, 王玉昌, 王大玮. 云南栘[木衣] 总DNA提取方法比较及SSR反应体系优化[J]. 云南农业大学学报(自然科学), 2022, 37(6):1064-1070. ZHANG XL, PENG JY, WANG YC, WANG DW. Comparison of extraction methods of total DNA and optimization of SSR reaction systems from Docynia delavayi[J]. Journal of Yunnan Agricultural University (Natural Science), 2022, 37(6):1064-1070(in Chinese).
    [17] 刘承清, 赵应红, 李晓幸. HPLC法测定傣药材楠果缅(栘木衣树皮)中的槲皮素含量[J]. 中国民族医药杂志, 2017, 23(10):38-40. LIU CQ, ZHAO YH, LI XX. Determination of quercetin content in Dai medicinal Docynia delavayi (Franch.) Schneid. by HPLC[J]. Journal of Medicine & Pharmacy of Chinese Minorities, 2017, 23(10):38-40(in Chinese).
    [18] DENG XK, ZHAO XP, LAN Z, JIANG J, YIN W, CHEN LY. Anti-tumor effects of flavonoids from the ethnic medicine Docynia delavayi (Franch.) Schneid. and its possible mechanism[J]. Journal of Medicinal Food. 2014, 17(7):787-794.
    [19] ZHAO X, SHU G, CHEN L, MI X, MEI Z, DENG X. A flavonoid component from Docynia delavayi (Franch.) Schneid. represses transplanted H22 hepatoma growth and exhibits low toxic effect on tumor-bearing mice[J]. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association, 2012, 50(9):3166-3173.
    [20] LILX, OUWL, WANGYC, PENG JY, WANG DW, XU S. Comparison of genetic diversity between ancient and common populations of Docynia delavayi (Franch.) Schneid.[J]. Gene, 2022, 829:146498.
    [21] PENG JY. Genetic diversity and population structure of the medicinal plant Docynia delavayi (Franch.) Schneid. revealed by transcriptome-based SSR markers[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2021, 21:100294.
    [22] 陈璨, 石辰, 王大玮, 彭劲谕, 段安安. 云南栘(木衣) SRAP-PCR反应体系的建立及引物筛选[J]. 云南农业大学学报(自然科学), 2021, 36(6):1037-1043. CHEN C, SHI C, WANG DW, PENG JY, DUAN AA. Establishment of SRAP-PCR reaction system on Docynia delavayi (Franch.) schneid. and selection of primers[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(6):1037-1043(in Chinese).
    [23] MAJ,YANG YJ, LUOW, YANG CC, DING PY, LIU YX, QIAO LY, CHANG ZJ, GENG HW, WANG PH, JIANG QT, WANG JR, CHEN GY, WEI YM, ZHENG YL, LAN XJ. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)[J]. PLoS One, 2017, 12(7):e0181443.
    [24] 徐宗大. 梅花花器官发育相关MADS-box基因的功能分析[D]. 北京:北京林业大学博士学位论文, 2015. XU ZD. Functional analysis of MADS-box genes related to floral organ development in Prunusmume[D]. Beijing:Doctoral Dissertation of Beijing Forestry University, 2015(in Chinese).
    [25] 陈晨, 朱高浦, 赵罕, 刘慧敏, 罗颖, 徐宛玉, 黄梦真, 乌云塔娜, 王淋. 西伯利亚杏全基因组MADS-box基因家族鉴定及表达分析[J]. 分子植物育种, 2020, 18(20):6575-6585. CHEN C, ZHU GP, ZHAO H, LIU HM, LUO Y, XU WY, HUANG MZ, WUY TN, WANG L. Genome-wide identification of MADS-box gene family and expression analysis in Prunus sibirica[J]. Molecular Plant Breeding, 2020, 18(20):6575-6585(in Chinese).
    [26] 刘春明, 程佑发, 刘永秀, 孙蒙祥, 薛红卫. 植物种子发育的分子机理[J]. 中国基础科学, 2016, 18(2):1-13. LIU CM, CHENG YF, LIU YX, SUN MX, XUE HW. Molecular mechanism of seed development in plants[J]. China Basic Science, 2016, 18(2):1-13(in Chinese).
    [27] WILLIS CG, BASKIN CC, BASKIN JM, AULD JR, LAWRENCE VENABLE D, CAVENDER-BARES J, DONOHUE K, RUBIO de CASAS R, GROUP TNGW. The evolution of seed dormancy:environmental cues, evolutionary hubs, and diversification of the seed plants[J]. New Phytologist, 2014, 203(1):300-309.
    [28] 王艳梅, 张小雪, 朱秀征, 张志华, 李志, 耿晓东, 蔡齐飞, 刘震. 林木种子休眠与萌发机制研究进展[J]. 林业科学, 2021, 57(10):128-144. WANG YM, ZHANG XX, ZHU XZ, ZHANG ZH, LI Z, GENG XD, CAI QF, LIU Z. Research progress on dormancy and germination mechanism of forest seeds[J]. Scientia Silvae Sinicae, 2021, 57(10):128-144(in Chinese).
    [29] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(7):1141-1156. XU HH, LI N, LIU SJ, WANG WQ, WANG WP, ZHANG H, CHENG HY, SONG SQ. Research progress in seed germination and its control[J]. Acta Agronomica Sinica, 2014, 40(7):1141-1156(in Chinese).
    [30] LEE S, WOO YM, RYU SI, SHIN YD, KIM WT, PARK KY, LEE IJ, AN G. Further characterization of a rice AGL12 group MADS-box gene, OsMADS26[J]. Plant Physiology, 2008, 147(1):156-168.
    [31] 马明臻. 草莓MADS-box基因家族生物信息学分析[J]. 江苏农业科学, 2015, 43(11):21-25. MA MZ. Bioinformatics analysis of strawberry MADS-box gene family[J]. Jiangsu Agricultural Sciences, 2015, 43(11):21-25(in Chinese).
    [32] 杨杰, 陈蓉, 胡文娟, 吴巧玲, 佟晓楠, 李兴涛. 枳PP2C基因家族的鉴定及表达分析[J]. 果树学报, 2022, 39(4):532-547. YANG J, CHEN R, HU WJ, WU QL, TONG XN, LI XT. Identification and expression analysis of PP2C gene family in Poncirus trifoliata[J]. Journal of Fruit Science, 2022, 39(4):532-547(in Chinese).
    [33] WUEST SE, O'MAOILEIDIGH DS, RAE L, KWASNIEWSKA K, RAGANELLI A, HANCZARYK K, LOHAN AJ, LOFTUS B, GRACIET E, WELLMER F. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33):13452-13457.
    [34] BOWMAN JL, SMYTH DR, MEYEROWITZ EM. The ABC model of flower development:then and now[J]. Development, 2012, 139(22):4095-4098.
    [35] de BODT S, RAES J, FLORQUIN K, ROMBAUTS S, ROUZÉ P, THEIßEN G, van de PEER Y. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants[J]. Journal of Molecular Evolution, 2003, 56(5):573-586.
    [36] 景丹龙, 郭启高, 陈薇薇, 夏燕, 吴頔, 党江波, 何桥, 梁国鲁. 被子植物花器官发育的模型演变和分子调控[J]. 植物生理学报, 2018, 54(3):355-362. JING DL, GUO QG, CHEN WW, XIA Y, WU D, DANG JB, HE Q, LIANG GL. Model evolution and molecular mechanism of angiosperm flower development[J]. Plant Physiology Journal, 2018, 54(3):355-362(in Chinese).
    [37] SHANNON S, MEEKS-WAGNER DR. Genetic interactions that regulate inflorescence development in Arabidopsis[J]. The Plant Cell, 1993:639-655.
    [38] 孟雨婷, 黄晓晨, 侯元同, 邱念伟. 花的形态与花发育的ABCDE模型[J]. 生物学杂志, 2017, 34(6):105-107, 115. MENG YT, HUANG XC, HOU YT, QIU NW. The floral morphology and the ABCDE model of floralorgan development[J]. Journal of Biology, 2017, 34(6):105-107, 115(in Chinese).
    [39] 郝树琳, 陈宏伟, 廖芳丽, 李莉, 刘昌燕, 刘良军, 万正煌, 沙爱华. 基于盐胁迫转录组信息的蚕豆F-box基因家族分析[J]. 中国农业科学, 2020, 53(17):3443-3454. HAO SL, CHEN HW, LIAO FL, LI L, LIU CY, LIU LJ, WAN ZH, SHA AH. Analysis of F-box gene family based on salt-stressed transcriptome sequencing in Vicia faba L.[J]. Scientia Agricultura Sinica, 2020, 53(17):3443-3454(in Chinese).
    [40] CHEN YY, TSAI WC. The function of C/D-class MADS-box genes in orchid gynostemium and ovule development[M]. Orchid Biotechnology III, 2017:289-308.
    [41] SUÁREZ-BARON H, PÉREZ-MESA P, AMBROSEBA, GONZÁLEZF, PABÓN-MORAN. Deep into the Aristolochia flower:expression of C, D, and E-class genes in Aristolochia fimbriata (Aristolochiaceae)[J]. Journal of Experimental Zoology Part B:Molecular and Developmental Evolution, 2017, 328(1/2):55-71.
    [42] EHLERS K, BHIDE AS, TEKLEYOHANS DG, WITTKOPB, SNOWDONRJ, BECKER A. The MADS-box genes ABS, SHP 1, and SHP 2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana[J]. PLoS One, 2016, 11(10):e0165075.
    [43] ALEJANDRA MANDEL M, GUSTAFSON-BROWN C, SAVIDGEB, YANOFSKY MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360(6401):273-277.
    [44] GU Q, FERRANDIZ C, YANOFSKY MF, MARTIENSSEN R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J]. Development, 1998, 125(8):1509-1517.
    [45] 熊书. 与植物种子油脂合成相关的MADS-box转录因子研究进展[J]. 求知导刊, 2016(23):31-32. XIONG S. Research progress of MADS-box transcription factors related to plant seed oil synthesis[J]. QiuZhiDaoKan, 2016(23):31-32(in Chinese).
    [46] 熊书, 李彦杰, 周大祥. 油菜MADS-box家族基因AGL11的克隆、表达及转化油菜的研究[J]. 西南农业学报, 2017, 30(10):2174-2178. XIONG S, LI YJ, ZHOU DX. Cloning and expression and transformation of MADS-box family gene AGL11 in Brassica napus[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(10):2174-2178(in Chinese).
    [47] 杨依维, 汪泽文, 王鹏飞, 张建成, 穆霄鹏, 杜俊杰. 欧李休眠相关基因MADS-box5(DAM5)的功能分析[J]. 植物生理学报, 2021, 57(2):473-479. YANG YW, WANG ZW, WANG PF, ZHANG JC, MU XP, DU JJ. Functional analysis of DAM5 gene in Cerasus humilis[J]. Plant Physiology Journal, 2021, 57(2):473-479(in Chinese).
    [48] UBI BE, SAKAMOTO D, BAN Y, SHIMADA T, ITO A, NAKAJIMA I, TAKEMURA Y, TAMURA F, SAITO T, MORIGUCHI T. Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear[J]. Journal of the American Society for Horticultural Science, 2010, 135(2):174-182.
    [49] VERELSTW, TWELL D, deFOLTER S, IMMINKR, SAEDLERH, MÜNSTERT. MADS-complexes regulate transcriptome dynamics during pollen maturation[J]. Genome Biology, 2007, 8(11):1-15.
    [50] ADAMCZYK BJ, FERNANDEZ DE. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis[J]. Plant Physiology, 2009, 149(4):1713-1723.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王溪唯,陈璨,王大玮. 云南栘[木衣]MADS-box基因家族鉴定与表达分析[J]. 生物工程学报, 2023, 39(7): 2897-2913

复制
分享
文章指标
  • 点击次数:193
  • 下载次数: 881
  • HTML阅读次数: 854
  • 引用次数: 0
历史
  • 收稿日期:2022-12-26
  • 录用日期:2023-03-09
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第6147083位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司