香蕉GLR基因家族全基因组鉴定及其响应低温与脱落酸/茉莉酸甲酯的表达分析
作者:
基金项目:

国家重点研发计划(2019YFD1000900);国家现代农业产业技术体系建设(香蕉)专项资金项目(GARS-31-15);福建省高原学科建设经费项目(102/71201801101)


Genome-wide identification of the banana GLR gene family and its expression analysis in response to low temperature and abscisic acid/methyl jasmonate
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    植物类谷氨酸受体(glutamate receptor-like,GLR)是一类重要的Ca2+通道蛋白,在植物的生长发育以及响应生物和非生物胁迫等方面有着重要作用。本研究基于香蕉基因组数据,对香蕉GLR基因家族进行全基因组鉴定,分析基本理化性质、基因结构、保守基序、启动子顺式作用元件和进化关系,并采用实时荧光定量聚合酶链式反应(real-time fluorescence quantitative polymerase chain reaction,RT-qPCR)验证GLR家族部分成员在4℃低温和不同激素处理下的表达模式。研究结果表明:香蕉A (Musa acuminata)基因组有19个MaGLR家族成员、B (Musa balbisiana)基因组16个MbGLR家族成员、阿宽蕉(Musa itinerans)基因组有14个MiGLR家族成员;大多数成员为稳定蛋白,绝大多数成员具有信号肽,均有3–6个跨膜结构;亚细胞定位预测均定位于质膜上,在染色体上无规则分布。进化树分析发现,香蕉GLR分为3个亚族。启动子顺式作用元件和转录因子结合位点(transcription factor binding site,TFBS)预测结果显示,香蕉GLR存在多种与激素、胁迫相关响应元件以及18种TFBS。RT-qPCR分析表明,MaGLR1.1MaGLR3.5在4℃低温胁迫下积极响应且脱落酸、茉莉酸甲酯处理中均有显著表达。本研究结果表明GLR是一种高度保守的离子通道家族,在香蕉生长发育过程和抗逆性方面可能发挥着重要作用。

    Abstract:

    Glutamate receptor-like (GLR) is an important class of Ca2+ channel proteins, playing important roles in plant growth and development as well as in response to biotic and abiotic stresses. In this paper, we performed genome-wide identification of banana GLR gene family based on banana genomic data. Moreover, we analyzed the basic physicochemical properties, gene structure, conserved motifs, promoter cis-acting elements, evolutionary relationships, and used real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) to verify the expression patterns of some GLR family members under low temperature of 4℃ and different hormone treatments. The results showed that there were 19 MaGLR family members in Musa acuminata, 16 MbGLR family members in Musa balbisiana and 14 MiGLR family members in Musa itinerans. Most of the members were stable proteins and had signal peptides, all of them had 3-6 transmembrane structures. Prediction of subcellular localization indicated that all of them were localized on the plasma membrane and irregularly distributed on the chromosome. Phylogenetic analysis revealed that banana GLRs could be divided into 3 subclades. The results of promoter cis-acting elements and transcription factor binding site prediction showed that there were multiple hormone- and stress-related response elements and 18 TFBS in banana GLR. RT-qPCR analysis showed that MaGLR1.1 and MaGLR3.5 responded positively to low temperature stress and were significantly expressed in abscisic acid/methyl jasmonate treatments. In conclusion, the results of this study suggest that GLR, a highly conserved family of ion channels, may play an important role in the growth and development process and stress resistance of banana.

    参考文献
    [1] 晏密, 陈莫, 张薇, 胡彦如, 卢迎春, 和四梅, 王继勇, 杨生超. 灯盏花GLRs基因家族鉴定及表达特性分析[J]. 分子植物育种, 2022, 20(9):2842-2853. YAN M, CHEN M, ZHANG W, HU YR, LU YC, HE SM, WANG JY, YANG SC. Identification and expression characteristics analysis of GLRs gene family of Erigeron breviscapus[J]. Molecular Plant Breeding, 2022, 20(9):2842-2853(in Chinese).
    [2] GONG JK, LIU JZ, RONAN EA, HE FT, CAI W, FATIMA M, ZHANG WY, LEE H, LI ZY, KIM GH, PIPE KP, DUAN B, LIU JF, XU XZS. A cold-sensing receptor encoded by a glutamate receptor gene[J]. Cell, 2019, 178(6):1375-1386.
    [3] FRANK JT, GANESH RP, MARC WA, PETER VB. The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms[J]. Molecular Biology and Evolution, 2001, 18(7):1417-1420.
    [4] LAM HM, CHIU J, HSIEH MH, MEISEL L, OLIVEIRA IC, SHIN M, CORUZZI G. Glutamate-receptor genes in plants[J]. Nature, 1998, 396(6707):125-126.
    [5] LACOMBE B, BECKER D, HEDRICH R, DeSALLE R, HOLLMANN M, KWAK JM, SCHROEDER JI, Le NOVÈRE N, NAM HG, SPALDING EP, TESTER M, TURANO FJ, CHIU J, CORUZZI G. The identity of plant glutamate receptors[J]. Science, 2001, 292(5521):1486-1487.
    [6] DINGLEDINE R, BORGES K, BOWIE D, TRAYNELIS SF. The glutamate receptor ion channels[J]. Pharmacological Reviews, 1999, 51(1):7-61.
    [7] WEILAND M, MANCUSO S, BALUSKA F. Signalling via glutamate and GLRs in Arabidopsis thaliana[J]. Functional Plant Biology, 2016, 43(1):1-25.
    [8] LI J, ZHU SH, SONG XW, SHEN Y, CHEN HM, YU J, YI KK, LIU YF, KARPLUS VJ, WU P, DENG XW. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem[J]. The Plant Cell, 2006, 18(2):340-349.
    [9] 景迎辉. 梨谷氨酸受体家族分析及PbrGLR3. 3的功能验证[D]. 南京:南京农业大学硕士学位论文, 2016. JING YH. Bioinformatics analysis of glutamate receptor-like gene and the functional identification of PbrGLR3. 3 in Pyrus[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2016(in Chinese).
    [10] 罗华, 胡大刚, 张连忠, 郝玉金. 苹果MdGLRs家族基因生物信息学鉴定和表达分析[J]. 园艺学报, 2012, 39(3):425-435. LUO H, HU DG, ZHANG LZ, HAO YJ. Bioinformatics and expression analysis of apple MdGLRs genes family[J]. Acta Horticulturae Sinica, 2012, 39(3):425-435(in Chinese).
    [11] AOUINI A, MATSUKURA C, EZURA H, ASAMIZU E. Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles[J]. Gene, 2012, 493(1):36-43.
    [12] 周生辉, 张磊, 吕欣泽, 黄金光. 玉米GLR家族基因的鉴定与分析[J]. 玉米科学, 2021, 29(2):35-42. ZHOU SH, ZHANG L, LÜ XZ, HUANG JG. Identification and analysis of GLR family genes in maize[J]. Journal of Maize Sciences, 2021, 29(2):35-42(in Chinese).
    [13] PHILIPPE F, VERDU I, MORÈRE-LE PAVEN MC, LIMAMI AM, PLANCHET E. Involvement of Medicago truncatula glutamate receptor-like channels in nitric oxide production under short-term water deficit stress[J]. Journal of Plant Physiology, 2019, 236:1-6.
    [14] KONG DD, JU CL, PARIHAR A, KIM S, CHO D, KWAK JM. Arabidopsis glutamate receptor Homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination[J]. Plant Physiology, 2015, 167(4):1630-1642.
    [15] SINGH SK, CHIEN CT, CHANG IF. The Arabidopsis glutamate receptor-like gene GLR3. 6 controls root development by repressing the Kip-related protein gene KRP4[J]. Journal of Experimental Botany, 2016, 67(6):1853-1869.
    [16] MICHARD E, LIMA PT, BORGES F, SILVA AC, TERESA PORTES M, CARVALHO JE, GILLIHAM M, LIU LH, OBERMEYER G, FEIJÓ JA. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine[J]. Science, 2011, 332(6028):434-437.
    [17] WUDICK MM, TERESA PORTES M, MICHARD E, ROSAS-SANTIAGO P, LIZZIO MA, NUNES CO, CAMPOS C, SANTA CRUZ DAMINELI D, CARVALHO JC, LIMA PT, PANTOJA O, FEIJÓ JA. Cornichon sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis[J]. Science, 2018, 360(6388):533-536.
    [18] ROY BC, MUKHERJEE A. Computational analysis of the glutamate receptor gene family of Arabidopsis thaliana[J]. Journal of Biomolecular Structure & Dynamics, 2017, 35(11):2454-2474.
    [19] HEBDA A, LISZKA A, LEWANDOWSKA A, LYCZAKOWSKI JJ, GABRYŚ H, KRZESZOWIEC W. Upregulation of GLRs expression by light in Arabidopsis leaves[J]. BMC Plant Biology, 2022, 22(1):1-11.
    [20] KANG JM, TURANO FJ. The putative glutamate receptor 1.1(AtGLR1. 1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(11):6872-6877.
    [21] KANG JM, MEHTA S, TURANO FJ. The putative glutamate receptor 1.1(AtGLR1. 1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss[J]. Plant and Cell Physiology, 2004, 45(10):1380-1389.
    [22] SIVAGURU M, PIKE S, GASSMANN W, BASKIN TI. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane:evidence that these responses are mediated by a glutamate receptor[J]. Plant and Cell Physiology, 2003, 44(7):667-675.
    [23] SHAO QL, GAO QF, LHAMO D, ZHANG HS, LUAN S. Two glutamate-and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis[J]. Science Signaling, 2020, 13(640):eaba1453.
    [24] YU B, WU Q, LI XX, ZENG RF, MIN Q, HUANG JL. Glutamate receptor-like gene OsGLR3. 4 is required for plant growth and systemic wound signaling in rice (Oryza sativa)[J]. New Phytologist, 2022, 233(3):1238-1256.
    [25] LI HZ, JIANG XC, LV XZ, AHAMMED GJ, GUO ZX, QI ZY, YU JQ, ZHOU YH. Tomato GLR3. 3 and GLR3. 5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis[J]. Plant, Cell & Environment, 2019, 42(12):3326-3339.
    [26] ZHENG Y, LUO LD, WEI JJ, CHEN Q, YANG YP, HU XY, KONG XX. The glutamate receptors AtGLR1. 2 and AtGLR1. 3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2018, 506(4):895-900.
    [27] LU GH, WANG XP, LIU JH, YU K, GAO Y, LIU HY, WANG CG, WANG W, WANG GK, LIU M, MAO GF, LI BF, QIN JY, XIA M, ZHOU JL, LIU JM, JIANG SQ, MO H, CUI JT, NAGASAWA N, et al. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants[J]. Plant Cell Reports, 2014, 33(4):617-631.
    [28] WANG PH, LEE CE, LIN YS, LEE MH, CHEN PY, CHANG HC, CHANG IF. The glutamate receptor-like protein GLR3. 7 interacts with 14-3-3ω and participates in salt stress response in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2019, 10:1169.
    [29] LIU SM, ZHANG XJ, XIAO SH, MA J, SHI WJ, QIN T, XI H, NIE XH, YOU CY, XU Z, WANG TY, WANG YJ, ZHANG ZN, LI JY, KONG J, AIERXI A, YU Y, LINDSEY K, KLOSTERMAN SJ, ZHANG XL, et al. A single-nucleotide mutation in a glutamate receptor-like gene confers resistance to Fusarium wilt in Gossypium hirsutum[J]. Advanced Science, 2021, 8(7):2002723.
    [30] BAURENS FC, BOCS S, ROUARD M, MATSUMOTO T, MILLER RN, RODIER-GOUD M, MBÉGUIÉ-A-MBÉGUIÉ D, YAHIAOUI N. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana)[J]. BMC Plant Biology, 2010, 10(1):1-16.
    [31] GAYRAL P, BLONDIN L, GUIDOLIN O, CARREEL F, HIPPOLYTE I, PERRIER X, ISKRA-CARUANA ML. Evolution of endogenous sequences of Banana streak virus:what can we learn from banana (Musa sp.) evolution?[J]. Journal of Virology, 2010, 84(14):7346-7359.
    [32] 李瑞珍. 香蕉1-氨基环丙烷-1-羧酸合成酶(ACS)反义基因植物表达载体的构建及转化香蕉的研究[D]. 海口:华南热带农业大学硕士学位论文, 2001. LI RZ. Construction of plant expression vector of banana 1-aminocyclopropane-1-carboxylate synthase (ACS) antisense gene and its transformation into banana[D]. Haikou:Master's Thesis of South China University of Tropical Agriculture, 2001(in Chinese).
    [33] WU W, NG WL, YANG JX, LI WM, GE XJ. High cryptic species diversity is revealed by genome-wide polymorphisms in a wild relative of banana, Musa itinerans, and implications for its conservation in subtropical China[J]. BMC Plant Biology, 2018, 18(1):1-11.
    [34] WU W, YANG YL, HE WM, ROUARD M, LI WM, XU M, ROUX N, GE XJ. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus[J]. Scientific Reports, 2016, 6:31586.
    [35] YATES AD, ALLEN J, AMODE RM, AZOV AG, BARBA M, BECERRA A, BHAI J, CAMPBELL LI, CARBAJO MARTINEZ M, CHAKIACHVILI M, CHOUGULE K, CHRISTENSEN M, CONTRERAS-MOREIRA B, CUZICK A, Da RIN FIORETTO L, DAVIS P, de SILVA NH, DIAMANTAKIS S, DYER S, ELSER J, et al. Ensembl genomes 2022:an expanding genome resource for non-vertebrates[J]. Nucleic Acids Research, 2022, 50(D1):D996-D1003.
    [36] EDDY SR. Profile hidden Markov models[J]. Bioinformatics, 1998, 14(9):755-763.
    [37] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
    [38] 刘范, 田娜, 孙雪丽, 刘嘉鹏, 伍俊为, 黄玉吉, 程春振. 香蕉GLP基因家族全基因组鉴定及表达分析[J]. 园艺学报, 2020, 47(10):1930-1946. LIU F, TIAN N, SUN XL, LIU JP, WU JW, HUANG YJ, CHENG CZ. Genome-wide identification and expression analysis of banana GLP gene family[J]. Acta Horticulturae Sinica, 2020, 47(10):1930-1946(in Chinese).
    [39] HAO ZD, LV DK, GE Y, SHI JS, WEIJERS D, YU GC, CHEN JH. RIdeogram:drawing SVG graphics to visualize and map genome-wide data on the idiograms[J]. PeerJ Computer Science, 2020, 6:e251.
    [40] JIN JP, TIAN F, YANG DC, MENG YQ, KONG L, LUO JC, GAO G. PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants[J]. Nucleic Acids Research, 2017, 45(D1):D1040-D1045.
    [41] 陈芳兰. 野生蕉β-1,3葡聚糖酶基因克隆及抗寒相关功能分析[D]. 福州:福建农林大学硕士学位论文, 2016. CHEN FL. Cloning and cold resistance analysis of β-1,3 glucanase gene (Mugsps) from wild banana[D]. Fuzhou:Master's Thesis of Fujian Agriculture and Forestry University, 2016(in Chinese).
    [42] LIU WH, CHENG CZ, LIN YL, XU XH, LAI ZX. Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans)[J]. PLoS One, 2018, 13(7):e0200002.
    [43] 孙雪丽. 香蕉Aux/IAA家族鉴定及其在P. indica诱导的FocTR4抗性中的表达分析[D]. 福州:福建农林大学硕士学位论文, 2019. SUN XL. Identification of banana Aux/IAA family and its expression analysis in P.indica-induced FocTR4 resistance[D]. Fuzhou:Master's Thesis of Fujian Agriculture and Forestry University, 2019(in Chinese).
    [44] CHIU JC, BRENNER ED, DeSALLE R, NITABACH MN, HOLMES TC, CORUZZI GM. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana[J]. Molecular Biology and Evolution, 2002, 19(7):1066-1082.
    [45] SINGH A, KANWAR P, YADAV AK, MISHRA M, JHA SK, BARANWAL V, PANDEY A, KAPOOR S, TYAGI AK, PANDEY GK. Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice[J]. FEBS Journal, 2014, 281(3):894-915.
    [46] MEYERHOFF O, MÜLLER K, ROELFSEMA MRG, LATZ A, LACOMBE B, HEDRICH R, DIETRICH P, BECKER D. AtGLR3. 4, a glutamate receptor channel-like gene is sensitive to touch and cold[J]. Planta, 2005, 222(3):418-427.
    [47] TEARDO E, FORMENTIN E, SEGALLA A, GIACOMETTI GM, MARIN O, ZANETTI M, LO SCHIAVO F, ZORATTI M, SZABÒ I. Dual localization of plant glutamate receptor AtGLR3. 4 to plastids and plasmamembrane[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(3):359-367.
    [48] 谭艳秋, 孙姝璟, 董静云, 徐伟, 王玲玲, 王永飞. 植物细胞质膜离子通道研究进展[J]. 植物学报, 2019, 54(1):102-118. TAN YQ, SUN SJ, DONG JY, XU W, WANG LL, WANG YF. Advances in plasma membrane ion channels of plant cells[J]. Chinese Bulletin of Botany, 2019, 54(1):102-118(in Chinese).
    [49] 何明洁, 孙伊辰, 程晓园, 时冬雪, 李迪秦, 陈益银, 冯永坤, 刘璐, 范腾飞, 杨超, 曹凤秋, 刘来华. 植物谷氨酸受体的研究进展[J]. 植物学报, 2016, 51(6):827-840. HE MJ, SUN YC, CHENG XY, SHI DX, LI DQ, CHEN YY, FENG YK, LIU L, FAN TF, YANG C, CAO FQ, LIU LH. Current research advances on glutamate receptors (GLRs) in plants[J]. Chinese Bulletin of Botany, 2016, 51(6):827-840(in Chinese).
    [50] 陈庆. 拟南芥AtGLR Ⅰ和AtGLR Ⅲ亚族的基因表达研究[D]. 宁波:宁波大学硕士学位论文, 2010. CHEN Q. Study on gene expressions of AtGLR Ⅰ and AtGLR Ⅲ subfamilies in Arabidopsis thaliana[D]. Ningbo:Master's Thesis of Ningbo University, 2010(in Chinese).
    [51] 叶放. 拟南芥AtGLR Ⅱ亚族的基因表达研究[D]. 宁波:宁波大学硕士学位论文, 2010. YE F. Study on expressions of AtGLR Ⅱ gene subfamily in Arabidopsis thaliana[D]. Ningbo:Master's Thesis of Ningbo University, 2010(in Chinese).
    [52] NADEAU JH, SANKOFF D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution[J]. Genetics, 1997, 147(3):1259-1266.
    [53] AMES RM, RASH BM, HENTGES KE, ROBERTSON DL, DELNERI D, LOVELL SC. Gene duplication and environmental adaptation within yeast populations[J]. Genome Biology and Evolution, 2010, 2:591-601.
    [54] SINGH LN, HANNENHALLI S. Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression[J]. PLoS One, 2008, 3(6):e2345.
    [55] MUKHERJEE D, SAHA D, ACHARYA D, MUKHERJEE A, GHOSH TC. Interplay between gene expression and gene architecture as a consequence of gene and genome duplications:evidence from metabolic genes of Arabidopsis thaliana[J]. Physiology and Molecular Biology of Plants, 2022, 28(5):1091-1108.
    [56] CHENG Y, ZHANG XX, SUN TY, TIAN QY, ZHANG WH. Glutamate receptor Homolog3.4 is involved in regulation of seed germination under salt stress in Arabidopsis[J]. Plant and Cell Physiology, 2018, 59(5):978-988.
    [57] QIU XM, SUN YY, WANG JQ, XIANG RH, LI ZG. Involvement of osmoregulation, glyoxalase, and non-glyoxalase systems in signaling molecule glutamic acid-boosted thermotolerance in maize seedlings[J]. Protoplasma, 2022, 259(6):1507-1520.
    [58] WANG CC, ZHANG H, XIA Q, YU JJ, ZHU DY, ZHAO Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize[J]. Plant Science, 2019, 289:110248.
    [59] MOUSAVI SAR, CHAUVIN A, PASCAUD F, KELLENBERGER S, FARMER EE. Glutamate receptor-like genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463):422-426.
    [60] HERNÁNDEZ-CORONADO M, DIAS ARAUJO PC, IP PL, NUNES CO, RAHNI R, WUDICK MM, LIZZIO MA, FEIJÓ JA, BIRNBAUM KD. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense[J]. Developmental Cell, 2022, 57(4):451-465.e6.
    [61] CHEN PY, HSU CY, LEE CE, CHANG IF. Arabidopsis glutamate receptor GLR3. 7 is involved in abscisic acid response[J]. Plant Signaling & Behavior, 2021, 16(12):1997513.
    [62] ZHANG H, ZHANG Q, ZHAI H, LI Y, WANG XF, LIU QC, HE SZ. Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress[J]. Scientific Reports, 2017, 7:40819.
    [63] KANG S, KIM HB, LEE H, CHOI JY, HEU S, OH C, KWON S, AN C. Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection[J]. Molecules and cells, 2006, 21(3):418-427.
    [64] WU Q, STOLZ S, KUMARI A, FARMER EE. The carboxy-terminal tail of GLR3. 3 is essential for wound-response electrical signaling[J]. New Phytologist, 2022, 236(6):2189-2201.
    [65] KUMARI A, CHÉTELAT A, NGUYEN CT, FARMER EE. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(40):20226-20231.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗彬彬,张慧,李丹,吴秋桢,葛婉君,朱田圆,陈裕坤,黄玉吉,林玉玲,赖钟雄. 香蕉GLR基因家族全基因组鉴定及其响应低温与脱落酸/茉莉酸甲酯的表达分析[J]. 生物工程学报, 2023, 39(7): 2874-2896

复制
分享
文章指标
  • 点击次数:280
  • 下载次数: 1923
  • HTML阅读次数: 1046
  • 引用次数: 0
历史
  • 收稿日期:2022-12-05
  • 录用日期:2023-02-22
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第5999397位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司