基于SSR分子标记的地被菊遗传多样性分析和指纹图谱构建
作者:
基金项目:

北京园林绿化增彩延绿科技创新工程项目(2019-KJC-02-10);国家重点研发计划(2020YFD100050201)


Genetic diversity analysis and fingerprints of Chrysanthemum×morifolium based on SSR molecular markers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了从分子水平上研究地被菊(Chrysanthemum×morifolium)种质资源的遗传多样性并建立地被菊品种的指纹图谱库,筛选出多态性高的引物用于地被菊品种间鉴定、亲缘关系分析和分子标记辅助选种体系的建立,本研究利用多态性好、条带清晰、重复性好的12对引物对91份地被菊材料和14份菊属近缘种材料进行简单重复序列(simple sequence repeat,SSR)分子标记和遗传多样性分析,从12对引物中筛选出9对核心引物对受试材料进行指纹图谱构建。结果显示,在105个样品中,12对引物检测出104个等位位点,范围为2—26,平均每个点位检测出9.25个等位基因数,平均每个点位检测得到的有效等位基因数(number of effective alleles,Ne)为2.745 6,范围为1.276 0—4.742 5;Shannon信息指数(Shannon genetic diversity index,I)变化范围是0.513 3—2.239 9,均值是1.209 0;Nei’s基因多样性指数(Nei’s gene diversity index,H)范围是0.216 3—0.789 1,均值是0.578 0;观测杂合度(observed heterozygosity,Ho)的范围是0.223 3—0.895 2,均值是0.557 5;期望杂合度(expected heterozygosity,He)的范围是0.217 4—0.793 3,均值是0.580 8;多态信息含量(polymorphism information content,PIC)值变化范围是0.211 5—0.774 0,均值是0.532 9;遗传相似性系数(genetic similarity,GS)范围为0.228 5—1.000 0,均值是0.608 3。聚类分析表明,在遗传距离(genetic distance,GD)=0.30时,受试材料可以分为两个类群。Structure群体结构分析将受试材料分为3个种群和1个混合种群。从12对引物中筛选出可完全区分105份受试材料的9对核心引物,构建了91份地被菊材料和14份菊属近缘种材料的指纹图谱。地被菊材料之间具有显著的遗传差异和丰富的遗传多样性,对于地被菊的园林应用和品种选育具有重要意义。地被菊品种和菊属近缘种的指纹图谱库的构建,一定程度上揭示了105份实验材料的亲缘关系,为今后地被菊品种鉴定与筛选体系的研究提供了技术支撑。

    Abstract:

    The present study aims to explore the genetic diversity of germplasm resources of Chrysanthemum×morifolium (hereinafter, C.×morifolium) at the molecular level and to establish a fingerprint database of C.×morifolium varieties. We employed 12 pairs of primers with high levels of polymorphism, clear bands, and high degrees of reproducibility to analyze the SSR molecular markers and genetic diversity of 91 C.×morifolium materials and 14 chrysanthemum- related materials. With regard to constructing the fingerprints of the tested materials, we chose 9 pairs of core primers. The findings revealed that 12 primer pairs detected 104 alleles in 105 samples, ranging from 2 to 26. The average number of observed alleles (Na) per site was 9.25. The average number of effective alleles (Ne) per site was 2.745 6, with its range being 1.276 0 to 4.742 5. Shannon genetic diversity index (I) values ranged between 0.513 3 and 2.239 9 (M=1.209 0). Nei's gene diversity index (H) ranged between 0.216 3 and 0.789 1 (M=0.578 0). The observed heterozygosity (Ho) ranged between 0.223 3 and 0.895 2 (M=0.557 5). The expected heterozygosity (He) ranged between 0.217 4 and 0.793 3 (M=0.580 8). The polymorphism information content (PIC) ranged between 0.211 5 and 0.774 0 (M=0.532 9). The genetic similarity (GS) ranged between 0.228 5 and 1.000 0 (M=0.608 3). Cluster analysis revealed that when the genetic distance (GD) equals to 0.30, the tested materials can be classified into 2 groups. When the GD equals to 0.27, the first group can be divided into 6 subgroups; accordingly, 105 tested materials can be divided into 7 subgroups. The cophenetic correlation test was carried out based on the cluster analysis, and the corresponding results showed that the cluster map correlated with the genetic similarity coefficient (r=0.952 73). According to the results of Structure population analysis, we obtained the optimal population number, with the true number of populations (K) being 3 and the population being divided concerning Q ≥ 0.5. Three subgroups, i.e., Q1, Q2 and Q3, included 34, 33 and 28 germplasms, respectively, and the remaining 10 germplasms were identified as the mixed population. During the experiment, 9 pairs of core primers were screened among the total of 12 for a complete differentiation regarding 105 tested materials, and the fingerprints of 91 C.×morifolium materials and 14 chrysanthemum-related materials were further constructed. Overall, there were significant genetic differences and rich genetic diversity among C.×morifolium materials, which would shed light on the garden application and variety selection fields of C.×morifolium. The fingerprint database of 105 C.×morifolium varieties and chrysanthemum-related species may provide technical support for future research regarding the identification and screening system of C.×morifolium varieties.

    参考文献
    [1] 陈俊愉, 崔娇鹏. 地被菊培育与造景[M]. 北京:中国林业出版社, 2006:1-5. CHEN JY, CUI JP. Ground Chrysanthemum Cultivation and Landscaping[M]. Beijing:China Forestry Publishing House, 2006:1-5(in Chinese).
    [2] 陈俊愉. 菊花起源:汉英双语[M]. 合肥:安徽科学技术出版社, 2012:68-75. CHEN JY. The Origin of Garden Chrysanthemum[M]. Hefei:Anhui Science & Technology Publishing House, 2012:68-75(in Chinese).
    [3] 王彭伟, 陈俊愉. 地被菊新品种选育研究[J]. 园艺学报, 1990, 17(3):223-228. WANG PW, CHEN JY. Studies on breeding ground-cover Chrysanthemum new cultivars[J]. Acta Horticulturae Sinica, 1990, 17(3):223-228(in Chinese).
    [4] 陈发棣, 房伟民, 赵宏波, 管志勇, 许高娟. 菊花新品种:地被菊系列[J]. 园艺学报, 2005, 32(6):1167, 1181. CHEN FD, FANG WM, ZHAO HB, GUAN ZY, XU GJ. New varieties of Chrysanthemum-ground cover varieties[J]. Acta Horticulturae Sinica, 2005, 32(6):1167, 1181(in Chinese).
    [5] 付少平. 地被菊的栽培管理及园林应用[J]. 中国园艺文摘, 2012, 28(2):136-137. FU SP. Cultivation, management and landscape application of ground cover Chrysanthemum[J]. Chinese Horticulture Abstracts, 2012, 28(2):136-137(in Chinese).
    [6] 李哲, 姚弘, 陈婷. 地被菊繁殖与栽培养护相关技术综述[J]. 现代园艺, 2017, 7(13):76-77. LI Z, YAO H, CHEN T. Summary of related techniques of ground cover Chrysanthemum propagation, cultivation and maintenance[J]. Xiandai Horticulture, 2017, 7(13):76-77(in Chinese).
    [7] 崔娇鹏. 地被菊抗旱节水性初步研究[D]. 北京:北京林业大学, 2005. CUI JP. Preliminary studies on drought resistance of the ground-cover Chrysanthemums[D]. Beijing:Beijing Forestry University, 2005(in Chinese).
    [8] 李正男, 鞠明岫, 马强, 张磊, 孙平平, 相宁. 菊花绿变病植原体在中国的发生及分子鉴定[J]. 植物检疫, 2020, 34(3):37-42. LI ZN, JU MX, MA Q, ZHANG L, SUN PP, XIANG N. The occurrence and molecular identification of Chrysanthemum virescence phytoplasma in China[J]. Plant Quarantine, 2020, 34(3):37-42(in Chinese).
    [9] 吴国盛. 部分菊属与亚菊属植物亲缘关系研究[D]. 南京:南京农业大学, 2007. WU GS. Studies on phylogenetic relationships between several taxa of Dendranthema and Ajania[D]. Nanjing:Nanjing Agricultural University, 2007(in Chinese).
    [10] KUMAR S, KUMAR M, YADAV HK, SHARMA S, KUMAR S. Genetic diversity and population structure analysis of Chrysanthemum (Dendranthema grandiflora Tzvelev) germplasm based on RAPD markers[J]. Journal of Environmental Biology, 2017, 38(3):457-464.
    [11] KAUL A, KUMAR S, GHANI M. In vitro mutagenesis and detection of variability among radiomutants of Chrysanthemum using RAPD[J]. Advances in Horticultural Science, 2011, 25(2):106-111.
    [12] 田赟, 雒新艳, 戴思兰. 菊花芽变和相似品种的RAPD分析[J]. 分子植物育种, 2008, 6(6):1223-1232. TIAN Y, LUO XY, DAI SL. RAPD analysis of sporting and similar cultivars in Chrysanthemum[J]. Molecular Plant Breeding, 2008, 6(6):1223-1232(in Chinese).
    [13] 李沛曈, 迟天华, 刘颖鑫, 范宏虹, 王海滨, 管志勇, 房伟民, 陈发棣, 张飞. 异色菊×菊花脑种间杂交F1代SSR遗传多态性分析、耐旱性鉴定及关联分析[J]. 南京农业大学学报, 2020, 43(2):238-246. LI PT, CHI TH, LIU YX, FAN HH, WANG HB, GUAN ZY, FANG WM, CHEN FD, ZHANG F. Genetic polymorphism analysis, evaluation of drought tolerance and association analysis using SSR markers in the interspecific Chrysanthemum dichrum × C. nankingense F1 hybrids[J]. Journal of Nanjing Agricultural University, 2020, 43(2):238-246(in Chinese).
    [14] MEKAPOGU M, KWON OK, HYUN DY, LEE KJ, AHN MS, PARK JT, JUNG JA. Identification of standard type cultivars in Chrysanthemum (Dendranthema grandiflorum) using SSR markers[J]. Horticulture, Environment, and Biotechnology, 2020, 61(1):153-161.
    [15] LUO C, CHEN DL, CHENG X, LIU H, LI YH, HUANG CL. Application of simple sequence repeat (SSR) markers to the genetic diversity of a Chrysanthemum germplasm collection[J]. Acta Horticulturae, 2019(1263):61-72.
    [16] NASRI F, ZAKIZADEH H, VAFAEE Y, MOZAFARI AA. In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethylmethanesulphonate (EMS) and mutation assessment by ISSR and IRAP markers[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2022, 149(3):657-673.
    [17] 程华, 李琳玲, 张心玲, 方佳, 郑永生, 姜德志, 程水源. 应用ISSR-PCR对10个菊花品种进行遗传多样性分析[J]. 湖北农业科学, 2011, 50(20):4292-4297. CHENG H, LI LL, ZHANG XL, FANG J, ZHENG YS, JIANG DZ, CHENG SY. Genetic diversity analysis of ten Chrysanthemum morifolium cultivars using ISSR-PCR[J]. Hubei Agricultural Sciences, 2011, 50(20):4292-4297(in Chinese).
    [18] NGUYEN TK, HA STT, LIM JH. Analysis of Chrysanthemum genetic diversity by genotyping-by-sequencing[J]. Horticulture, Environment, and Biotechnology, 2020, 61(5):903-913.
    [19] 邵清松, 郭巧生, 张志远. 药用菊花种质资源遗传多样性的ISSR分析[J]. 中草药, 2009, 40(12):1971-1975. SHAO QS, GUO QS, ZHANG ZY. ISSR analysis for genetic diversity of Chrysanthemum morifolium[J]. Chinese Traditional and Herbal Drugs, 2009, 40(12):1971-1975(in Chinese).
    [20] 张鲜艳. 菊属及其近缘属植物遗传多样性及亲缘关系初步研究[D]. 南京:南京农业大学, 2010. ZHANG XY. Studies on genetic diversity and phylogenetic relationship of Dendranthema and its related genera[D]. Nanjing:Nanjing Agricultural University, 2010(in Chinese).
    [21] 徐悦, 黄兰, 李金花, 邓煜, 张建国, 曾艳飞. 基于表型和SSR标记的陇南油橄榄品种鉴定与遗传多样性分析[J]. 林业科学研究, 2022, 35(4):33-43. XU Y, HUANG L, LI JH, DENG Y, ZHANG JG, ZENG YF. Identification and genetic diversity analysis of olive cultivars in Longnan based on phenotype and SSR markers[J]. Forest Research, 2022, 35(4):33-43(in Chinese).
    [22] 关利平, 王玲玲, 曹珂, 王力荣. 桃品种鉴定的SSR核心引物筛选及其应用[J]. 中国果树, 2021(6):33-38. GUAN LP, WANG LL, CAO K, WANG LR. Screening of SSR core primers for variety identification of peach and its application[J]. China Fruits, 2021(6):33-38(in Chinese).
    [23] 罗芊芊, 赵明水, 肖德卿, 金国庆, 庞春梅, 祁祥斌, 周志春. 基于SSR标记羊角槭子一代和子二代的遗传多样性分析[J]. 植物资源与环境学报, 2022, 31(5):66-73. LUO QQ, ZHAO MS, XIAO DQ, JIN GQ, PANG CM, QI XB, ZHOU ZC. Analysis on genetic diversity of first filial generation and second filial generation of Acer yangjuechi based on SSR markers[J]. Journal of Plant Resources and Environment, 2022, 31(5):66-73(in Chinese).
    [24] 程林涛, 孙晓阳, 谢福春, 宋航, 蒋佳, 朱慧森, 白小明, 陈雅君. 基于表型性状和SSR分子标记的草地早熟禾遗传多样性分析和分子身份证构建[J]. 中国草地学报, 2022, 44(9):1-10. CHENG LT, SUN XY, XIE FC, SONG H, JIANG J, ZHU HS, BAI XM, CHEN YJ. Genetic diversity analysis and molecular ID construction of Kentucky bluegrass based on phenotypic traits and SSR molecular markers[J]. Chinese Journal of Grassland, 2022, 44(9):1-10(in Chinese).
    [25] 赵靓, 罗燕杰, 肖思文, 蔡亚南, 何立飞, 遆羽静, 李庆卫. 基于表型和SSR标记的梅花种质资源遗传多样性分析[J]. 分子植物育种, 2019, 17(13):4458-4469. ZHAO L, LUO YJ, XIAO SW, CAI YN, HE LF, TI YJ, LI QW. Genetic diversity analysis on Prunus mume germplasm resources based on phenotypic traits and SSR markers[J]. Molecular Plant Breeding, 2019, 17(13):4458-4469(in Chinese).
    [26] 聂兴华, 刘松, 王碧瑶, 李琰, 练蔓青, 秦岭, 郑瑞杰, 邢宇. 基于SSR标记的我国主栽日本栗品种(系)遗传结构分析和指纹图谱构建[J]. 核农学报, 2022, 36(11):2104-2114. NIE XH, LIU S, WANG BY, LI Y, LIAN MQ, QIN L, ZHENG RJ, XING Y. Genetic structure analysis and fingerprinting construction of the main Japanese chestnut cultivars (lines) using SSR markers in China[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(11):2104-2114(in Chinese).
    [27] 位明明, 黄肖, 李维国, 黄华孙. 利用SSR荧光标记构建37个中国橡胶树栽培品种指纹图谱[J]. 热带作物学报, 2022, 43(8):1565-1576. WEI MM, HUANG X, LI WG, HUANG HS. Using the SSR fluorescent labeling to establish SSR fingerprints for 37 cultivars in rubber tree (Hevea brasiliensis)[J]. Chinese Journal of Tropical Crops, 2022, 43(8):1565-1576(in Chinese).
    [28] 李亚慧. 菊花微卫星位点引物开发及遗传多样性分析[D]. 长春:吉林农业大学硕士学位论文, 2012. LI YH. Development of microsatellite loci primers in Chrysanthemum and genetic diversity analysis[D]. Changchun:Master's Thesis of Jilin Agricultural University, 2012(in Chinese).
    [29] 何仁锋, 冯尚国, 陈喆, 沈晓霞, 沈宇峰, 王志安, 王慧中. 药用菊花SSR-PCR反应体系优化及引物筛选[J]. 分子植物育种, 2015, 13(2):367-378. HE RF, FENG SG, CHEN Z, SHEN XX, SHEN YF, WANG ZA, WANG HZ. Optimization and primer screening of SSR-PCR reaction system in medicinal Chrysanthemum morifolium based on orthogonal design[J]. Molecular Plant Breeding, 2015, 13(2):367-378(in Chinese).
    [30] 叶松. 菊花表型性状与SSR、SCoT分子标记的关联分析[D]. 开封:河南大学硕士学位论文, 2017. YE S. Association analysis of phenotypic traits with SSR and SCoT molecular markers in Dendranthema morifolium (Ramat.) tzvel.[D]. Kaifeng:Master's Thesis of Henan University, 2017(in Chinese).
    [31] 梅洪娟, 马瑞君, 庄东红. 指纹图谱技术及其在植物种质资源中的应用[J]. 广东农业科学, 2014, 41(3):159-164. MEI HJ, MA RJ, ZHUANG DH. Fingerprinting technology and its application in plant germplasm resources[J]. Guangdong Agricultural Sciences, 2014, 41(3):159-164(in Chinese).
    [32] 张辕. 基于三种标记的中国传统菊花品种鉴定及分类研究[D]. 北京:北京林业大学, 2014. ZHANG Y. Studies on the identification and classification of Chinese traditional Chrysanthemum cultivars based on three types of markers[D]. Beijing:Beijing Forestry University, 2014(in Chinese).
    [33] 杨洁, 宋江琴, 唐楠, 唐道城. 万寿菊属品种(系)遗传多样性分析及指纹图谱构建[J]. 分子植物育种, 2021, 19(10):3367-3376. YANG J, SONG JQ, TANG N, TANG DC. Analysis of genetic diversity and fingerprinting of marigold cultivars (lines)[J]. Molecular Plant Breeding, 2021, 19(10):3367-3376(in Chinese).
    [34] JO KM, JO Y, CHU H, LIAN S, CHO WK. Development of EST-derived SSR markers using next-generation sequencing to reveal the genetic diversity of 50 Chrysanthemum cultivars[J]. Biochemical Systematics and Ecology, 2015, 60:37-45.
    [35] SHIM EJ, HEO EJ, YOON MK, SOH EH, HONG JH. Construction of SSR marker database of Chrysanthemum varieties collected in Korea[J]. Korean Journal of Breeding Science, 2015, 47(4):366-375.
    [36] 樊文强, 盖红梅, 孙鑫, 杨爱国, 张忠锋, 任民. SSR数据格式转换软件DataFormater[J]. 分子植物育种, 2016, 14(1):265-270. FAN WQ, GE HM, SUN X, YANG AG, ZHANG ZF, REN M. Dataformater, a software for SSR data formatting to develop population genetics analysis[J]. Molecular Plant Breeding, 2016, 14(1):265-270(in Chinese).
    [37] 王芝懿, 李振芳, 彭婵, 陈英, 张新叶. 基于荧光SSR标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2):61-69. WANG ZY, LI ZF, PENG C, CHEN Y, ZHANG XY. Genetic diversity analysis of Lagerstroemia indica based on fluorescent SSR markers[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(2):61-69(in Chinese).
    [38] 李鸥, 曹顶臣, 张研, 顾颖, 张晓峰, 鲁翠云, 孙效文. 利用EST-SSR分子标记研究鲤的饲料转化率性状[J]. 水产学报, 2009, 33(4):624-631. LI O, CAO DC, ZHANG Y, GU Y, ZHANG XF, LU CY, SUN XW. Studies on feed conversion ratio trait of common carp (Cyprinus carpio L.) using EST-SSR marker[J]. Journal of Fisheries of China, 2009, 33(4):624-631(in Chinese).
    [39] 吕宝忠. 多态信息量(PIC)等于杂合度吗?[J]. 遗传, 1994, 16(4):31-33. LÜ BZ. Does the polymorphism information content equal the heterozygosity?[J]. Hereditas, 1994, 16(4):31-33(in Chinese).
    [40] 肖志娟, 翟梅枝, 王振元, 许静, 李丽, 杨惠. 微卫星DNA在分析核桃遗传多样性上的应用[J]. 中南林业科技大学学报, 2014, 34(2):55-61. XIAO ZJ, ZHAI MZ, WANG ZY, XU J, LI L, YANG H. Application of microsatellite DNA on analyzing genetic diversity of Juglans regia[J]. Journal of Central South University of Forestry & Technology, 2014, 34(2):55-61(in Chinese).
    [41] 戴思兰, 王文奎, 黄家平. 菊属系统学及菊花起源的研究进展[J]. 北京林业大学学报, 2002, 24(S1):234-238. DAI SL, WANG WK, HUANG JP. Advances of researches on phylogeny of Dendranthema and origin of Chrysanthemum[J]. Journal of Beijing Forestry University, 2002, 24(S1):234-238(in Chinese).
    [42] PRITCHARD JK, STEPHENS M, ROSENBERG NA, DONNELLY P. Association mapping in structured populations[J]. American Journal of Human Genetics, 2000, 67(1):170-181.
    [43] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7):1259-1274. WANG YY, WANG J, LIU GX, ZHONG Q, ZHANG HS, LUO ZZ, CHEN ZH, DAI PG, TONG Y, LI Y, JIANG X, ZHANG XW, YANG AG. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources[J]. Acta Agronomica Sinica, 2021, 47(7):1259-1274(in Chinese).
    [44] 韩洁, 胡楠, 李玉阁, 尚富德. 菊花品种资源遗传多样性的AFLP分析[J]. 园艺学报, 2007, 34(4):1041-1046. HAN J, HU N, LI YG, SHANG FD. Genetic diversity of Chrysanthemum cultivars revealed by AFLP analysis[J]. Acta Horticulturae Sinica, 2007, 34(4):1041-1046(in Chinese).
    [45] 缪恒彬, 陈发棣, 赵宏波, 房伟民, 石丽敏. 应用ISSR对25个小菊品种进行遗传多样性分析及指纹图谱构建[J]. 中国农业科学, 2008, 41(11):3735-3740. MIAO HB, CHEN FD, ZHAO HB, FANG WM, SHI LM. Genetic diversity and construction of fingerprinting of Chrysanthemum cultivars by ISSR markers[J]. Scientia Agricultura Sinica, 2008, 41(11):3735-3740(in Chinese).
    [46] 胡春龙. 基于SSR标记构建白蜡种质资源分子身份证及其遗传多样性分析[D]. 泰安:山东农业大学硕士学位论文, 2015. HU CL. Establishment of molecular ID for Fraxinus based on SSR markers and analysis of genetic diversity[D]. Taian:Master's Thesis of Shandong Agricultural University, 2015(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李子航,何立飞,王秀军,郭林繁,罗春燕,李庆卫. 基于SSR分子标记的地被菊遗传多样性分析和指纹图谱构建[J]. 生物工程学报, 2023, 39(7): 2839-2860

复制
分享
文章指标
  • 点击次数:221
  • 下载次数: 1605
  • HTML阅读次数: 840
  • 引用次数: 0
历史
  • 收稿日期:2022-11-16
  • 录用日期:2023-01-26
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第5992726位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司