桃儿七苯丙氨酸解氨酶的基因克隆及其酶活分析
作者:
基金项目:

国家自然科学基金(31760077,32260230)


Gene cloning and enzymatic activity analysis of phenylalanine ammonia-lyase from Sinopodophyllum hexandrum (Royle) Ying
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)作为植物苯丙烷类途径的入口关键酶,对抗肿瘤木脂素——鬼臼毒素的生物合成具有重要影响。桃儿七[Sinopodophyllum hexandrum(Royle) Ying]是鬼臼毒素的主要天然来源,以四川阿坝地区桃儿七植株的根为材料,基于桃儿七公共SRA转录组数据包,通过反转录聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR)克隆其苯丙氨酸解氨酶基因ShPAL。生物信息学分析表明,ShPAL编码蛋白由711个氨基酸组成,包含PAL保守结构域,有芳香族氨基酸解氨酶活性中心的特征性基序,二级结构主要由α-螺旋和无规则卷曲组成,单体三级结构呈现典型的“海马状”,Swiss建模空间结构为同源四聚体,在系统发育谱系上与同属小蘖科(Berberidaceae)的三枝九叶草(Epimedium sagittatum) PAL序列相似度最高、进化距离最短。亚细胞定位实验结果显示ShPAL蛋白主要定位于细胞质中、少量定位于内质网膜上。ShPAL蛋白通过大肠杆菌(Escherichia coli)重组表达和组氨酸标签亲和纯化,其酶活高达20.91 U/mg,最适温度为41℃,最适pH为9.0;其F130H突变体酶活降低约23.6%,但随温度、pH变化的趋势不变,证实该位置的苯丙氨酸确为影响PAL底物特异性的残基;两者的热稳定性均较差,但pH稳定性较好。这些结果将有助于进一步分析ShPAL在鬼臼毒素生物合成过程中的调控作用,以及促进鬼臼毒素异源合成,从而保护桃儿七种质资源,同时也表明ShPAL可在生物化工和生物医学方面具有潜在应用价值。

    Abstract:

    Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical ‘seahorse’ shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.

    参考文献
    [1] VOGT T. Phenylpropanoid biosynthesis[J]. Molecular Plant, 2010, 3(1):2-20.
    [2] BARROS J, DIXON RA. Plant phenylalanine/tyrosine ammonia-lyases[J]. Trends in Plant Science, 2020, 25(1):66-79.
    [3] de VRIES S, FÜRST-JANSEN JMR, IRISARRI I, ASHOK AD, ISCHEBECK T, FEUSSNER K, ABREU IN, PETERSEN M, FEUSSNER I, de VRIES J. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families[J]. The Plant Journal, 2021, 107(4):975-1002.
    [4] PENG F, ENGEL U, ALIYU H, RUDAT J. Origin and evolution of enzymes with MIO prosthetic group:microbial coevolution after the mass extinction event[J]. Frontiers in Genetics, 2022, 13:851738.
    [5] RITTER H, SCHULZ GE. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase[J]. The Plant Cell, 2004, 16(12):3426-3436.
    [6] LOUIE GV, BOWMAN ME, MOFFITT MC, BAIGA TJ, MOORE BS, NOEL JP. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases[J]. Chemistry & Biology, 2006, 13(12):1327-1338.
    [7] WANG L, GAMEZ A, ARCHER H, ABOLA EE, SARKISSIAN CN, FITZPATRICK P, WENDT D, ZHANG YH, VELLARD M, BLIESATH J, BELL SM, LEMONTT JF, SCRIVER CR, STEVENS RC. Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase[J]. Journal of Molecular Biology, 2008, 380(4):623-635.
    [8] JUN SY, SATTLER SA, CORTEZ GS, VERMERRIS W, SATTLER SE, KANG C. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase[J]. Plant Physiology, 2018, 176(2):1452-1468.
    [9] PARMEGGIANI F, WEISE NJ, AHMED ST, TURNER NJ. Synthetic and therapeutic applications of ammonia-lyases and aminomutases[J]. Chemical Reviews, 2018, 118(1):73-118.
    [10] KAWATRA A, DHANKHAR R, MOHANTY A, GULATI P. Biomedical applications of microbial phenylalanine ammonia lyase:current status and future prospects[J]. Biochimie, 2020, 177:142-152.
    [11] 魏西羽, 冯翠月, 吕瑞杰, 樊帅, 杨兆勇, 张志斐. 半理性设计提高Anabaena variabilis来源的苯丙氨酸解氨酶的催化活性[J]. 药学学报, 2022, 57(12):3669-3674. WEI XY, FENG CY, LV RJ, FAN S, YANG ZY, ZHANG ZF. Semi-rational design improves the catalytic activity of phenylalanine ammonia lyase from Anabaena variabilis[J]. Acta Pharmaceutica Sinica, 2022, 57(12):3669-3674(in Chinese).
    [12] TOMOIAGĂ RB, TORK SD, FILIP A, NAGY LC, BENCZE LC. Phenylalanine ammonia-lyases:combining protein engineering and natural diversity[J]. Applied Microbiology and Biotechnology, 2023, 107(4):1243-1256.
    [13] DONG NQ, LIN HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1):180-209.
    [14] ZHANG X, LIU CJ. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids[J]. Molecular Plant, 2015, 8(1):17-27.
    [15] SULIS DB, WANG JP. Regulation of lignin biosynthesis by post-translational protein modifications[J]. Frontiers in Plant Science, 2020, 11:914.
    [16] OHTANI M, DEMURA T. The quest for transcriptional hubs of lignin biosynthesis:beyond the NAC-MYB-gene regulatory network model[J]. Current Opinion in Biotechnology, 2019, 56:82-87.
    [17] YIN RH, MESSNER B, FAUS-KESSLER T, HOFFMANN T, SCHWAB W, HAJIREZAEI MR, von SAINT PAUL V, HELLER W, SCHÄFFNER AR. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation[J]. Journal of Experimental Botany, 2012, 63(7):2465-2478.
    [18] ZHANG XB, GOU MY, LIU CJ. Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase[J]. The Plant Cell, 2013, 25(12):4994-5010.
    [19] ALLWOOD EG, DAVIES DR, GERRISH C, ELLIS BE, BOLWELL GP. Phosphorylation of phenylalanine ammonia-lyase:evidence for a novel protein kinase and identification of the phosphorylated residue[J]. FEBS Letters, 1999, 457(1):47-52.
    [20] COCHRANE FC, DAVIN LB, LEWIS NG. The Arabidopsis phenylalanine ammonia lyase gene family:kinetic characterization of the four PAL isoforms[J]. Phytochemistry, 2004, 65(11):1557-1564.
    [21] ACHNINE L, BLANCAFLOR EB, RASMUSSEN S, DIXON RA. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis[J]. The Plant Cell, 2004, 16(11):3098-3109.
    [22] BASSARD JE, RICHERT L, GEERINCK J, RENAULT H, DUVAL F, ULLMANN P, SCHMITT M, MEYER E, MUTTERER J, BOERJAN W, de JAEGER G, MELY Y, GOOSSENS A, WERCK-REICHHART D. Protein-protein and protein-membrane associations in the lignin pathway[J]. The Plant Cell, 2012, 24(11):4465-4482.
    [23] WANG J, LIU BG, SUN Y, CHIANG V, SEDEROFF R. Enzyme-enzyme interactions in monolignol biosynthesis[J]. Frontiers in Plant Science, 2019, 9:1942.
    [24] DREßEN A, HILBERATH T, MACKFELD U, BILLMEIER A, RUDAT J, POHL M. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2):a potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids.:part I:comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL)[J]. Journal of Biotechnology, 2017, 258:148-157.
    [25] ZANG Y, JIANG T, CONG Y, ZHENG ZJ, OUYANG J. Molecular characterization of a recombinant Zea mays phenylalanine ammonia-lyase (ZmPAL2) and its application in trans-cinnamic acid production from L-phenylalanine[J]. Applied Biochemistry and Biotechnology, 2015, 176(3):924-937.
    [26] HSIEH LS, MA GJ, YANG CC, LEE PD. Cloning, expression, site-directed mutagenesis and immunolocalization of phenylalanine ammonia-lyase in Bambusa oldhamii[J]. Phytochemistry, 2010, 71(17/18):1999-2009.
    [27] ZHU QL, XIE XR, LIN HX, SUI SZ, SHEN RX, YANG ZF, LU K, LI MY, LIU YG. Isolation and functional characterization of a phenylalanine ammonia-lyase gene (SsPAL1) from Coleus (Solenostemon scutellarioides (L.) codd)[J]. Molecules, 2015, 20(9):16833-16851.
    [28] MA WL, WU M, WU Y, REN ZM, ZHONG Y. Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis[J]. Plant Cell Reports, 2013, 32(8):1179-1190.
    [29] 吕思佳, 吴月燕, 贾永红, 何凡, 蒋宝鑫, 杨国霞, 谢晓鸿. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析[J]. 生物工程学报, 2022, 38(1):374-385. LÜ SJ, WU YY, JIA YH, HE F, JIANG BX, YANG GX, XIE XH. Cloning and functional analysis of the phenylalaninammo-nialyase gene from Rhododendron fortunei[J]. Chinese Journal of Biotechnology, 2022, 38(1):374-385(in Chinese).
    [30] FAN LJ, SHI GF, YANG J, LIU GL, NIU ZQ, YE WB, WU SQ, WANG L, GUAN QJ. A protective role of phenylalanine ammonia-lyase from Astragalus membranaceus against saline-alkali stress[J]. International Journal of Molecular Sciences, 2022, 23(24):15686.
    [31] ZHU BF, LIU Y, PEI XQ, WU ZL. Characterization of phenylalanine ammonia lyases from lettuce (Lactuca sativa L.) as robust biocatalysts for the production of D-and L-amino acids[J]. Journal of Agricultural and Food Chemistry, 2023, 71(6):2935-2942.
    [32] KUMARI A, SINGH D, KUMAR S. Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species:current status, challenges, and opportunities for its commercialization[J]. Critical Reviews in Biotechnology, 2017, 37(6):739-753.
    [33] YOUSEFZADI M, SHARIFI M, BEHMANESH M, GHASEMPOUR A, MOYANO E, PALAZON J. The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture[J]. Plant Physiology and Biochemistry, 2012, 56:41-46.
    [34] van FÜRDEN B, HUMBURG A, FUSS E. Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures[J]. Plant Cell Reports, 2005, 24(5):312-317.
    [35] YOUSEFZADI M, SHARIFI M, BEHMANESH M, GHASEMPOUR A, MOYANO E, PALAZON J. Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis[J]. Biotechnology Letters, 2010, 32(11):1739-1743.
    [36] TASHACKORI H, SHARIFI M, AHMADIAN CHASHMI N, BEHMANESH M, SAFAIE N. Piriformospora indica cell wall modulates gene expression and metabolite profile in Linum album hairy roots[J]. Planta, 2018, 248(5):1289-1306.
    [37] LI MF, LI W, YANG DL, ZHOU LL, LI TT, SU XM. Relationship between podophyllotoxin accumulation and soil nutrients and the influence of Fe2+ and Mn2+ on podophyllotoxin biosynthesis in Podophyllum hexandrum tissue culture[J]. Plant Physiology and Biochemistry, 2013, 71:96-102.
    [38] SCHULTZ BJ, KIM SY, LAU W, SATTELY ES. Total biosynthesis for milligram-scale production of etoposide intermediates in a plant chassis[J]. Journal of the American Chemical Society, 2019, 141(49):19231-19235.
    [39] HECKMAN KL, PEASE LR. Gene splicing and mutagenesis by PCR-driven overlap extension[J]. Nature Protocols, 2007, 2(4):924-932.
    [40] YUAN H, WANG YX, LIU YJ, ZHANG MR, ZOU ZR. A novel dominant selection system for plant transgenics based on phosphite metabolism catalyzed by bacterial alkaline phosphatase[J]. PLoS One, 2021, 16(11):e0259600.
    [41] NAGANO M, UEDA H, FUKAO Y, KAWAI-YAMADA M, HARA-NISHIMURA I. Generation of Arabidopsis lines with a red fluorescent marker for endoplasmic reticulum using a tail-anchored protein cytochrome b5-B[J]. Plant Signaling & Behavior, 2020, 15(9):1790196.
    [42] SHARMA M, KLÖSGEN RB, BENNEWITZ B. Fluorescent protein-based approaches for subcellular protein localization in Plants[M]//Methods in Molecular Biology. New York, NY:Springer US, 2022:203-211.
    [43] 张健慧, 王首锋. 膜荚黄芪苯丙氨酸解氨酶基因在毕赤酵母中的分泌表达[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1):1-8. ZHANG JH, WANG SF. Expression of Astragalus membranaceus phenylalanine ammonia-lyase gene in Pichia pastoris[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2014, 40(1):1-8(in Chinese).
    [44] SCHREIBER M, RENSING SA, GOULD SB. The greening ashore[J]. Trends in Plant Science, 2022, 27(9):847-857.
    [45] 盛超雷, 原野, 庞力豪, 卢宝荣. 氨基酸序列分析揭示苯丙氨酸/酪氨酸解氨酶在陆生植物中的演化[J]. 复旦学报(自然科学版), 2023, 62(3). 2022-11-01. DOI:10.15943/j.cnki.fdxb-jns.20221031.001. SHENG CL, YUAN Y, PANG LH, LU BR. Amino acid sequence-based evolution of phenylalanine/tyrosine ammonia-lyase in terrestrial plants[J]. Journal of Fudan University (Natural Science Edition), 2023, 62(3). 2022-11-01. DOI:10.15943/j.cnki.fdxb-jns.20221031.001(in Chinese).
    [46] MOFFITT MC, LOUIE GV, BOWMAN ME, PENCE J, NOEL JP, MOORE BS. Discovery of two cyanobacterial phenylalanine ammonia lyases:kinetic and structural characterization[J]. Biochemistry, 2007, 46(4):1004-1012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡迪,罗晓伟,王宇贤,龚明,邹竹荣. 桃儿七苯丙氨酸解氨酶的基因克隆及其酶活分析[J]. 生物工程学报, 2023, 39(7): 2818-2838

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-05
  • 录用日期:2023-04-05
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第6022195位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司