生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征
作者:
基金项目:

湖南省科技厅科研项目(2019JJ50646);湖南省教育厅科研项目(20C0017,19B040)


Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究生物电化学强化厌氧氨氧化(anaerobic ammonia oxidation,anammox)脱氮作用过程,采用双室微生物电解池(microbial electrolysis cell,MEC)富集电活性微生物,构建耦合厌氧氨氧化阴极的生物电化学系统。具体地,在外加0.2 V电压条件下改变不同总氮进水浓度于30℃进行暗培养批次实验研究,结合循环伏安法、电化学阻抗谱、高通量测序方法等多种表征手段研究了强化脱氮机理。结果表明,在初始总氮浓度分别为200、300和400 mg/L时对应获得了96.9%±0.3%、97.3%±0.4%和99.0%±0.3%的总氮去除率,且阴极电极生物膜表现出良好的电化学活性。高通量测序结果表明外加电压富集了除厌氧氨氧化菌以外的其他脱氮功能菌群:反硝化菌(Denitratisoma)、Limnobacter和氨氧化菌SM1A02Anaerolineaceae、亚硝化菌(Nitrosomonas europaea)和硝化螺菌属(Nitrospira)等,这些具有电化学活性的微生物构成了体系的氨氧化胞外产电菌(ammonium oxidizing exoelectrogens,AOE)和反硝化电养菌(denitrifying electrotrophs,DNE),它们连同厌氧氨氧化菌Candidatus Brocadia构成了系统的脱氮微生物群落结构。AOE和DNE的种间直接电子传递作用协同厌氧氨氧化是强化系统总氮去除的关键原因。

    Abstract:

    To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.

    参考文献
    [1] GU J, ZHANG M, LIU Y. A review on mainstream deammonification of municipal wastewater:novel dual step process[J]. Bioresource Technology, 2020, 299:122674.
    [2] LACKNER S, GILBERT EM, VLAEMINCK SE, JOSS A, HORN H, van LOOSDRECHT MCM. Full-scale partial nitritation/anammox experiences-an application survey[J]. Water Research, 2014, 55:292-303.
    [3] CHENG HY, TIAN XD, LI CH, WANG SS, SU SG, WANG HC, ZHANG B, SHARIF HMA, WANG AJ. Microbial photoelectrotrophic denitrification as a sustainable and efficient way for reducing nitrate to nitrogen[J]. Environmental Science & Technology, 2017, 51(21):12948-12955.
    [4] di CAPUA F, PIROZZI F, LENS PNL, ESPOSITO G. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362:922-937.
    [5] KARTAL B, MAALCKE WJ, de ALMEIDA NM, CIRPUS I, GLOERICH J, GEERTS W, den CAMP HJMO, HARHANGI HR, JANSSEN-MEGENS EM, FRANCOIJS KJ, STUNNENBERG HG, KELTJENS JT, JETTEN MSM, STROUS M. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7371):127-130.
    [6] WANG LS, GU WC, LIU YC, LIANG P, ZHANG XY, HUANG X. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment[J]. The Science of the Total Environment, 2022, 820:153351.
    [7] SUGIMOTO Y, KITAZUMI Y, TSUJIMURA S, SHIRAI O, YAMAMOTO M, KANO K. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis[J]. Biosensors & Bioelectronics, 2015, 63:138-144.
    [8] YIN X, QIAO S, ZHOU JT,QUAN X. Using three-bio-electrode reactor to enhance the activity of anammox biomass[J]. Bioresource Technology, 2015, 196:376-382.
    [9] HUANG B, GAO SM, XU ZX, HE H, PAN XJ. The functional mechanisms and application of electron shuttles in extracellular electron transfer[J]. Current Microbiology, 2018, 75(1):99-106.
    [10] FENG Q, SONG YC, YOO K, KUPPANAN N, SUBUDHI S, Lal B. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor[J]. Chemosphere, 2018, 204:186-192.
    [11] SONG YC, JOICY A, JANG SH. Direct interspecies electron transfer in bulk solution significantly contributes to bioelectrochemical nitrogen removal[J]. International Journal of Hydrogen Energy, 2018, 44(4):2180-2190.
    [12] JOICY A, SONG YC, YU HC, CHAE KJ. Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field[J]. Journal of Environmental Management, 2019, 250:109517.
    [13] QIAO S, YIN X, ZHOU JT, WEI LE, ZHONG JY. Integrating anammox with the autotrophic denitrification process via electrochemistry technology[J]. Chemosphere, 2018, 195:817-824.
    [14] SU DX, CHEN YP. Advanced bioelectrochemical system for nitrogen removal in wastewater.[J]. Chemosphere, 2021, 292:133206.
    [15] WANG H, YANG M, LIU K, YANG EZ, CHEN J, WU S, XIE M, WANG DB, DENG HW, CHEN H. Insights into the synergy between functional microbes and dissolved oxygen partition in the single-stage partial nitritation-anammox granules system[J]. Bioresource Technology, 2021, 347:126234.
    [16] QU B, FAN B, ZHU SK, ZHENG YL. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1):100-105.
    [17] QIAO L, YUAN Y, MEI C, YIN WX, ZOU C, YIN YA, GUO QY, CHEN TM, DING C. Reinforced nitrite supplement by cathode nitrate reduction with a bio-electrochemical system coupled anammox reactor[J]. Environmental Research, 2022, 204:112051.
    [18] ZHENG WX, ZHU LY, YAN Z, LIN ZC, LEI ZC, ZHANG YF, XU HL, DANG Z, WEI CH, FENG CH. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia:from fundamentals to scale-up for treatment of industrial wastewater[J]. Environmental Science & Technology, 2021, 55(19):13231-13243.
    [19] 许明熠, 周少奇, 刘泽珺, 王敬平, 马福臻. 耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究[J]. 环境科学学报, 2017, 37(1):154-161. XU MY, ZHOU SQ, LIU ZJ, WANG JP, MA FZ. Study on performance of dual-chamber MFC coupled with anammox process in a high nitrogen load circumstance[J]. Acta Scientiae Circumstantiae, 2017, 37(1):154-161(in Chinese).
    [20] FENG Q, SONG YC,YOO K, KUPPANAN N, SUBUDHI S, LAL B. Bioelectrochemical enhancement of direct interspecies electron transfer in upflow anaerobic reactor with effluent recirculation for acidic distillery wastewater[J]. Bioresource Technology, 2017, 241:171-180.
    [21] WILLIAMS DR, ROWE JJ, ROMERO P, EAGON RG. Denitrifying Pseudomonas aeruginosa:some parameters of growth and active transport[J]. Applied and Environmental Microbiology, 1978, 36(2):257-263.
    [22] POUS N, KOCH C, COLPRIM J, PUIG S, HARNISCH F. Extracellular electron transfer of biocathodes:revealing the potentials for nitrate and nitrite reduction of denitrifying microbiomes dominated by Thiobacillus sp.[J]. Electrochemistry Communications, 2014, 49:93-97.
    [23] KONDAVEETI S, LEE HS, PARK HD, MIN B. Bacterial communities in a bioelectrochemical denitrification system:the effects of supplemental electron acceptors[J]. Water Research, 2014, 51:25-36.
    [24] CHEN WJ, CHEN SD, HU F, LIU WR, YANG DH, WU J. A novel anammox reactor with a nitrogen gas circulation:performance, granule size, activity, and microbial community[J]. Environmental Science and Pollution Research, 2020, 27(15):18661-18671.
    [25] FENG JP, ZHANG Q, TAN B, LI M, PENG HJ, HE J, ZHANG YJ, SU JH. Microbial community and metabolic characteristics evaluation in start-up stage of electro-enhanced SBR for aniline wastewater treatment[J]. Journal of Water Process Engineering, 2022, 45:102489.
    [26] VILAJELIU-PONS A, Koch C, Balaguer MD, COLPRIM J, HARNISCH F, PUIG S. Microbial electricity driven anoxic ammonium removal[J]. Water Research, 2018, 130:168-175.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢莱,杨敏,杨恩喆,刘志华,耿欣,陈宏. 生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征[J]. 生物工程学报, 2023, 39(7): 2719-2729

复制
分享
文章指标
  • 点击次数:482
  • 下载次数: 1372
  • HTML阅读次数: 889
  • 引用次数: 0
历史
  • 收稿日期:2022-11-08
  • 录用日期:2023-01-13
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第5995147位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司