生物基塑料单体5-氨基戊酸的生物合成新途径
作者:
基金项目:

国家重点研发计划(2022YFC2105700,2021YFC2103300,2021YFE0190800);国家自然科学基金(21978027);中央高校基本科研业务费专项资金(2022CDJXY-003,2022CDJHLW006,2020CDCGJ020,2020CDCGHG068);重庆市杰出青年基金(cstc2021jcyj-jqX0013);重庆市教育委员会科学技术研究计划青年项目(KJQN201900112)


A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    5-氨基戊酸(5-aminovalanoic acid, 5AVA)可作为新型塑料尼龙5和尼龙56的前体,是合成聚酰亚胺的有前途的平台化合物。目前5-氨基戊酸的生物合成法普遍产率较低且合成过程复杂,成本高。为实现5AVA的绿色生物合成,本研究通过组合表达来自日本白腹鲭(Scomber japonicas)的l-赖氨酸α-氧化酶、来自乳酸乳球菌(Lactococcus lactis)的α-酮酸脱羧酶和来自大肠杆菌(Escherichia coli)的醛脱氢酶,在大肠杆菌中建立了一条以l-赖氨酸为原料,以2-酮-6-氨基己酸盐为中间产物生物合成5AVA的途径。在葡萄糖浓度为55 g/L,赖氨酸盐酸盐40 g/L的初始条件下,最终消耗158 g/L的葡萄糖和144 g/L的赖氨酸盐酸盐,补料分批发酵产生了57.52 g/L的5AVA,摩尔得率为0.62 mol/mol。与文献报道的以2-酮-6-氨基己酸盐为中间产物的5AVA生物合成途径相比,本文报道的新途径无需使用乙醇和双氧水,且5AVA产量进一步提高。

    Abstract:

    5-aminovalanoic acid (5AVA) can be used as the precursor of new plastics nylon 5 and nylon 56, and is a promising platform compound for the synthesis of polyimides. At present, the biosynthesis of 5-aminovalanoic acid generally is of low yield, complex synthesis process and high cost, which hampers large-scale industrial production. In order to achieve efficient biosynthesis of 5AVA, we developed a new pathway mediated by 2-keto-6- aminohexanoate. By combinatory expression of l-lysine α-oxidase from Scomber japonicus, α-ketoacid decarcarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli, the synthesis of 5AVA from l-lysine in Escherichia coli was achieved. Under the initial conditions of glucose concentration of 55 g/L and lysine hydrochloride of 40 g/L, the final consumption of 158 g/L glucose and 144 g/L lysine hydrochloride, feeding batch fermentation to produce 57.52 g/L of 5AVA, and the molar yield is 0.62 mol/mol. The new 5AVA biosynthetic pathway does not require ethanol and H2O2, and achieved a higher production efficiency as compared to the previously reported Bio-Chem hybrid pathway mediated by 2-keto-6-aminohexanoate.

    参考文献
    [1] CHENG J, HU G, XU YQ, TORRENS-SPENCE MP, ZHOU XH, WANG D, WENG JK, WANG QH. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon- chain-extension cycle[J]. Metabolic Engineering, 2019, 55:23-32.
    [2] YANG JG, ZHU YM, MEN Y, SUN SS, ZENG Y, ZHANG Y, SUN YX, MA YH. Pathway construction in Corynebacterium glutamicum and strain engineering to produce rare sugars from glycerol[J]. Journal of Agricultural and Food Chemistry, 2016, 64(50):9497-9505.
    [3] YOUN JW, ALBERMANN C, SPRENGER GA. In vivo cascade catalysis of aromatic amino acids to the respective mandelic acids using recombinant E. coli cells expressing hydroxymandelate synthase (HMS) from Amycolatopsis mediterranei[J]. Molecular Catalysis, 2020, 483:110713.
    [4] FANG H, LI D, KANG J, JIANG PT, SUN JB, ZHANG DW. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12[J]. Nature Communications, 2018, 9:4917.
    [5] GAO S, ZHOU HR, ZHOU JW, CHEN J. Promoter-library-based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2020, 68(25):6884-6891.
    [6] KLENK JM, ERTL J, RAPP L, FISCHER MP, HAUER B. Expression and characterization of the benzoic acid hydroxylase CYP199A25 from Arthrobacter sp.[J]. Molecular Catalysis, 2020, 484:110739.
    [7] RODRIGUES JL, GOMES D, RODRIGUES LR. A combinatorial approach to optimize the production of curcuminoids from tyrosine in Escherichia coli[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:59.
    [8] ZENG BY, LAI YM, LIU LJ, CHENG J, ZHANG Y, YUAN JF. Engineering Escherichia coli for high-yielding hydroxytyrosol synthesis from biobased l-tyrosine[J]. Journal of Agricultural and Food Chemistry, 2020, 68(29):7691-7696.
    [9] ZHAO M, HUANG DX, ZHANG XJ, KOFFAS MAG, ZHOU JW, DENG Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47:254-262.
    [10] ZHAO M, LI GH, DENG Y. Engineering Escherichia coli for glutarate production as the C5 platform backbone[J]. Applied and Environmental Microbiology, 2018, 84(16):e814-e818.
    [11] CHAE TU, KIM WJ, CHOI S, PARK SJ, LEE SY. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine[J]. Scientific Reports, 2015, 5:13040.
    [12] KIND S, JEONG WK, SCHRÖDER H, WITTMANN C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane[J]. Metabolic Engineering, 2010, 12(4):341-351.
    [13] RUI JQ, YOU SP, ZHENG YX, WANG CY, GAO YT, ZHANG W, QI W, SU RX, HE ZM. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a lysine-induced engineered Escherichia coli[J]. Bioresource Technology, 2020, 302:122844.
    [14] NAKAMURA CE, WHITED GM. Metabolic engineering for the microbial production of 1,3-propanediol[J]. Current Opinion in Biotechnology, 2003, 14(5):454-459.
    [15] NIIMI S, SUZUKI N, INUI M, YUKAWA H. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2011, 90(5):1721-1729.
    [16] ADKINS J, JORDAN J, NIELSEN DR. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J]. Biotechnology and Bioengineering, 2013, 110(6):1726-1734.
    [17] PARK SJ, KIM EY, NOH W, OH YH, KIM HY, SONG BK, CHO KM, HONG SH, LEE SH, JEGAL J. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli[J]. Bioprocess and Biosystems Engineering, 2013, 36(7):885-892.
    [18] ROHLES CM, GIEßELMANN G, KOHLSTEDT M, WITTMANN C, BECKER J. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate[J]. Microbial Cell Factories, 2016, 15(1):1-13.
    [19] HONG YG, MOON YM, HONG JW, NO SY, CHOI TR, JUNG HR, YANG SY, BHATIA SK, AHN JO, PARK KM, YANG YH. Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis[J]. Enzyme and Microbial Technology, 2018, 118:57-65.
    [20] ZHANG JW, BARAJAS JF, BURDU M, WANG G, BAIDOO EE, KEASLING JD. Application of an acyl-CoA ligase from Streptomyces aizunensis for lactam biosynthesis[J]. ACS Synthetic Biology, 2017, 6(5):884-890.
    [21] PARK SJ, OH YH, NOH W, KIM HY, SHIN JH, LEE EG, LEE S, DAVID Y, BAYLON MG, SONG BK, JEGAL J, LEE SY, LEE SH. High-level conversion of l-lysine into 5-aminovalerate that can be used for nylon 6, 5 synthesis[J]. Biotechnology Journal, 2014, 9(10):1322-1328.
    [22] LIU P, ZHANG HW, LV M, HU MD, LI Z, GAO C, XU P, MA CQ. Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase[J]. Scientific Reports, 2014, 4:5657.
    [23] DAIRO TO, NELSON NC, SLOWING Ⅱ, ANGELICI RJ, WOO LK. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold[J]. Catalysis Letters, 2016, 146(11):2278-2291.
    [24] YING HX, TAO S, WANG J, MA WC, CHEN KQ, WANG X, OUYANG PK. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli[J]. Microbial Cell Factories, 2017, 16(1):1-11.
    [25] JOO JC, OH YH, YU JH, HYUN SM, KHANG TU, KANG KH, SONG BK, PARK K, OH MK, LEE SY, PARK SJ. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process[J]. Bioresource Technology, 2017, 245:1692-1700.
    [26] PARK SJ, KIM EY, NOH W, PARK HM, OH YH, LEE SH, SONG BK, JEGAL J, LEE SY. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals[J]. Metabolic Engineering, 2013, 16:42-47.
    [27] SHIN JH, PARK SH, OH YH, CHOI JW, LEE MH, CHO JS, JEONG KJ, JOO JC, YU J, PARK SJ, LEE SY. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid[J]. Microbial Cell Factories, 2016, 15(1):1-13.
    [28] LI Z, XU J, JIANG TT, GE YS, LIU P, ZHANG MM, SU ZG, GAO C, MA CQ, XU P. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli[J]. Scientific Reports, 2016, 6:30884.
    [29] WANG X, CAI PP, CHEN KQ, OUYANG PK. Efficient production of 5-aminovalerate from l-lysine by engineered Escherichia coli whole-cell biocatalysts[J]. Journal of Molecular Catalysis B:Enzymatic, 2016, 134:115-121.
    [30] JORGE JMP, PÉREZ-GARCÍA F, WENDISCH VF. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources[J]. Bioresource Technology, 2017, 245:1701-1709.
    [31] CHENG J, ZHANG YN, HUANG MH, CHEN P, ZHOU XH, WANG D, WANG QH. Enhanced 5-aminovalerate production in Escherichia coli from l-lysine with ethanol and hydrogen peroxide addition[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12):3492-3501.
    [32] PUKIN AV, BOERIU CG, SCOTT EL, SANDERS JPM, FRANSSEN MCR. An efficient enzymatic synthesis of 5-aminovaleric acid[J]. Journal of Molecular Catalysis B:Enzymatic, 2010, 65(1/2/3/4):58-62.
    [33] XU S, LU XD, LI M, WANG J, LI H, HE X, FENG J, WU JL, CHEN KQ, OUYANG PK. Separation of 5-aminovalerate from its bioconversion liquid by macroporous adsorption resin:mechanism and dynamic separation[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(3):686-693.
    [34] XIONG MY, DENG J, WOODRUFF AP, ZHU MS, ZHOU J, PARK SW, LI H, FU Y, ZHANG KC. A bio-catalytic approach to aliphatic ketones[J]. Scientific Reports, 2012, 2:311.
    [35] JAMBUNATHAN P, ZHANG KC. Novel pathways and products from 2-keto acids[J]. Current Opinion in Biotechnology, 2014, 29:1-7.
    [36] WANG J, WU YF, SUN XX, YUAN QP, YAN YJ. De novo biosynthesis of glutarate via α-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli[J]. ACS Synthetic Biology, 2017, 6(10):1922-1930.
    [37] ATSUMI S, HANAI T, LIAO JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174):86-89.
    [38] CHEN GS, SIAO SW, SHEN CR. Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle[J]. Scientific Reports, 2017, 7:11284.
    [39] ZHANG KC, SAWAYA MR, EISENBERG DS, LIAO JC. Expanding metabolism for biosynthesis of nonnatural alcohols[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52):20653-20658.
    [40] SHEN CR, LIAO JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways[J]. Metabolic Engineering, 2008, 10(6):312-320.
    [41] CHENG J, HUANG YD, MI L, CHEN WJ, WANG D, WANG QH. An economically and environmentally acceptable synthesis of chiral drug intermediate l-pipecolic acid from biomass-derived lysine via artificially engineered microbes[J]. Journal of Industrial Microbiology and Biotechnology, 2018, 45(6):405-415.
    [42] CHENG J, LUO Q, DUAN HC, PENG H, ZHANG Y, HU JP, LU Y. Efficient whole-cell catalysis for 5-aminovalerate production from l-lysine by using engineered Escherichia coli with ethanol pretreatment[J]. Scientific Reports, 2020, 10:990.
    [43] NIU PQ, DONG XX, WANG YC, LIU LM. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase[J]. Journal of Biotechnology, 2014, 179:56-62.
    [44] LIU QD, MA XQ, CHENG HJ, XU N, LIU J, MA YH. Co-expression of l-glutamate oxidase and catalase in Escherichia coli to produce α-ketoglutaric acid by whole-cell biocatalyst[J]. Biotechnology Letters, 2017, 39(6):913-919.
    [45] CÁMARA E, LANDES N, ALBIOL J, GASSER B, MATTANOVICH D, FERRER P. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris[J]. Scientific Reports, 2017, 7:44302.
    [46] HAUPKA C, DELÉPINE B, IRLA M, HEUX S, WENDISCH VF. Flux enforcement for fermentative production of 5-aminovalerate and glutarate by Corynebacterium glutamicum[J]. Catalysts, 2020, 10(9):1065.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康雅琦,罗若诗,林凡祯,程杰,周桢,王丹. 生物基塑料单体5-氨基戊酸的生物合成新途径[J]. 生物工程学报, 2023, 39(5): 2070-2080

复制
分享
文章指标
  • 点击次数:397
  • 下载次数: 1225
  • HTML阅读次数: 980
  • 引用次数: 0
历史
  • 收稿日期:2022-11-18
  • 在线发布日期: 2023-05-08
  • 出版日期: 2023-05-25
文章二维码
您是第6328168位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司