塑料的降解与可降解塑料——聚羟基脂肪酸酯的合成
作者:
基金项目:

国家重点研发计划(2018YFA0900200);国家自然科学基金(32130001);中欧组织间合作研究项目MIX-UP(870294)


The degradation of plastics and the production of polyhydroxyalkanoates (PHA)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [103]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,塑料污染的问题始终困扰着人类社会。为了解决不可回收的塑料带来的环境问题,“降塑再造”的理念被提出。“降塑再造”主要包括塑料的降解和塑料的再生。而再生成为可降解的聚羟基脂肪酸酯(polyhydroxyalkanoates, PHA)则是实现塑料内循环的一种方式。PHA是一种可由多种微生物合成的生物聚酯,以其特有的生物相容性和可降解性以及热加工性能而被大家所关注。同时利用PHA的多样化的单体组成、加工技术和改性方法,可以进一步改善PHA的性能,产生类型多样、性能各异的PHA材料,也可以创造平衡耐久性和生物降解性的新产品,这些特性使PHA有望成为传统塑料的替代品之一。利用极端微生物进行生产的“下一代工业技术(next-generation industrial biotechnology, NGIB)”可以增加PHA的市场竞争力,为国家碳中和目标顺利实施提供参考。本文综述了各类塑料降解并生产PHA的可能性、PHA材料的基础材料属性、加工和改性方法及获得的新材料、新技术和独特的材料性质。

    Abstract:

    In recent years, the petroleum-based plastic pollution problem has been causing global attention. The idea of “degradation and up-cycling of plastics” was proposed for solving the environmental pollution caused by non-degradable plastics. Following this idea, plastics would be firstly degraded and then reconstructed. Polyhydroxyalkanoates (PHA) can be produced from the degraded plastic monomers as a choice to recycle among various plastics. PHA, a family of biopolyesters synthesized by many microbes, have attracted great interest in industrial, agricultural and medical sectors due to its biodegradability, biocompatibility, thermoplasticity and carbon neutrality. Moreover, the regulations on PHA monomer compositions, processing technology, and modification methods may further improve the material properties, making PHA a promising alternative to traditional plastics. Furthermore, the application of the “next-generation industrial biotechnology (NGIB)” utilizing extremophiles for PHA production is expected to enhance the PHA market competitiveness, promoting this environmentally friendly bio-based material to partially replace petroleum-based products, and achieve sustainable development with carbon-neutrality. This review summarizes the basic material properties, plastic upcycling via PHA biosynthesis, processing and modification methods of PHA, and biosynthesis of novel PHA.

    参考文献
    [1] RESEARCH G V. Plastic market size, share & trends analysis report by product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, epoxy polymers, LCP, PC, polyamide), by application, by end-use, by region, and segment forecasts, 2021-2028[EB/OL].[2023-01-01]. https://www.grandviewresearch.com/industry-analysis/global-plastics-market
    [2] ELHACHAM E, BEN-URI L, GROZOVSKI J, BAR-ON YM, MILO R. Global human-made mass exceeds all living biomass[J]. Nature, 2020, 588(7838):442-444.
    [3] ERIKSEN M, LEBRETON LCM, CARSON HS, THIEL M, MOORE CJ, BORERRO JC, GALGANI F, RYAN PG, REISSER J. Plastic pollution in the world's oceans:more than 5 trillion plastic pieces weighing over 250000 tons afloat at sea[J]. PLoS One, 2014, 9(12):e111913.
    [4] 周杰, 苏海佳, 吴琼, 邢建民, 董维亮, 姜岷. 中欧组织间合作研究项目MIX-UP助力实现"碳中和"[J]. 生物工程学报, 2021, 37(10):3414-3424. ZHOU J, SU HJ, WU Q, XING JM, DONG WL, JIANG M. MIXed plastics biodegradation and UPcycling using microbial communities:the NSFC-EU 2019 project MIX-UP to help achieve "carbon neutrality"[J]. Chinese Journal of Biotechnology, 2021, 37(10):3414-3424(in Chinese).
    [5] CHEN GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry[J]. Chemical Society Reviews, 2009, 38(8):2434.
    [6] 栾晓玉, 刘巍, 崔兆杰, 刘业业, 陈月冬, 卢盛, 王玉标. 基于物质流分析的中国塑料资源代谢研究[J]. 资源科学, 2020, 42(2):372-382. LUAN XY, LIU W, CUI ZJ, LIU YY, CHEN YD, LU S, WANG YB. Plastic resources metabolism in China based on material flow analysis[J]. Resources Science, 2020, 42(2):372-382(in Chinese).
    [7] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278):1196-1199.
    [8] RONKVIST ÅM, XIE WC, LU WH, GROSS RA. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009, 42(14):5128-5138.
    [9] HERRERO ACERO E, RIBITSCH D, STEINKELLNER G, GRUBER K, GREIMEL K, EITELJOERG I, TROTSCHA E, WEI R, ZIMMERMANN W, ZINN M, CAVACO-PAULO A, FREDDI G, SCHWAB H, GUEBITZ G. Enzymatic surface hydrolysis of PET:effect of structural diversity on kinetic properties of cutinases from Thermobifida[J]. Macromolecules, 2011, 44(12):4632-4640.
    [10] SULAIMAN S, YAMATO S, KANAYA E, KIM JJ, KOGA Y, TAKANO K, KANAYA S. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach[J]. Applied and Environmental Microbiology, 2012, 78(5):1556-1562.
    [11] TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉ I, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802):216-219.
    [12] PLASTICSEUROPE. Plastics-the facts 2021 an analysis of European plastics production, demand and waste data[EB/OL].[2022-01-01]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/.
    [13] KAY MJ, MORTON LHG, PRINCE EL. Bacterial degradation of polyester polyurethane[J]. International Biodeterioration, 1991, 27(2):205-222.
    [14] SHAH Z, KRUMHOLZ L, AKTAS DF, HASAN F, KHATTAK M, ALI SHAH A. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75[J]. Biodegradation, 2013, 24(6):865-877.
    [15] LIU JW, HE J, XUE R, XU B, QIAN XJ, XIN FX, BLANK LM, ZHOU J, WEI R, DONG WL, JIANG M. Biodegradation and up-cycling of polyurethanes:progress, challenges, and prospects[J]. Biotechnology Advances, 2021, 48:107730.
    [16] DELACUVELLERIE A, CYRIAQUE V, GOBERT S, BENALI S, WATTIEZ R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380:120899.
    [17] SKARIYACHAN S, PATIL A, SHANKAR A, MANJUNATH M, BACHAPPANAVAR N, KIRAN S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants[J]. Polymer Degradation and Stability, 2018, 149:52-68.
    [18] AUTA HS, EMENIKE CU, JAYANTHI B, FAUZIAH SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127:15-21.
    [19] YANG J, YANG Y, WU WM, ZHAO J, JIANG L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23):13776-13784.
    [20] HARSHVARDHAN K, JHA B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India[J]. Marine Pollution Bulletin, 2013, 77(1/2):100-106.
    [21] TRIBEDI P, SIL AK. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm[J]. Environmental Science and Pollution Research, 2013, 20(6):4146-4153.
    [22] AZEKO ST, ETUK-UDO GA, ODUSANYA OS, MALATESTA K, ANUKU N, SOBOYEJO WO. Biodegradation of linear low density polyethylene by Serratia marcescens subsp. marcescens and its cell free extracts[J]. Waste and Biomass Valorization, 2015, 6(6):1047-1057.
    [23] JEON H J, KIM M N. Isolation of mesophilic bacterium for biodegradation of polypropylene[J]. International Biodeterioration & Biodegradation, 2016, 115:244-249.
    [24] BRANDON AM, GAO SH, TIAN RM, NING DL, YANG SS, ZHOU JZ, WU WM, CRIDDLE CS. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome[J]. Environmental Science & Technology, 2018, 52(11):6526-6533.
    [25] YANG Y, YANG J, WU WM, ZHAO J, SONG YL, GAO LC, YANG RF, JIANG L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms:part 2. role of gut microorganisms[J]. Environmental Science & Technology, 2015, 49(20):12087-12093.
    [26] ATIQ N, AHMED S, ISHTIAQ ALI M, ANDLEEB S, AHMAD B, ROBSON G. Isolation and identification of polystyrene biodegrading bacteria from soil[J]. African Journal of Microbiology Research, 2010, 4(14):1537-1541.
    [27] MOR R, SIVAN A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber[J]. Biodegradation, 2008, 19(6):851-858.
    [28] ZHANG Z, PENG HR, YANG DC, ZHANG GQ, ZHANG JL, JU F. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae[J]. Nature Communications, 2022, 13:5360.
    [29] INDERTHAL H, TAI SL, HARRISON STL. Non-hydrolyzable plastics-an interdisciplinary look at plastic bio-oxidation[J]. Trends in Biotechnology, 2021, 39(1):12-23.
    [30] SHANG LA, JIANG M, CHANG HN. Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations[J]. Biotechnology Letters, 2003, 25(17):1415-1419.
    [31] SUDESH K, IWATA T. Sustainability of biobased and biodegradable plastics[J]. CLEAN-Soil, Air, Water, 2008, 36(5/6):433-442.
    [32] CHOI SY, CHO IJ, LEE Y, KIM YJ, KIM KJ, LEE SY. Bacterial polyesters:microbial polyhydroxyalkanoates and nonnatural polyesters (adv. mater. 35/2020)[J]. Advanced Materials, 2020, 32(35):2070264.
    [33] 陈心宇, 李梦怡, 陈国强. 聚羟基脂肪酸酯PHA代谢工程研究30年[J]. 生物工程学报, 2021, 37(5):1794-1811. CHEN XY, LI MY, CHEN GQ. Thirty years of metabolic engineering for biosynthesis of polyhydroxyalkanoates[J]. Chinese Journal of Biotechnology, 2021, 37(5):1794-1811(in Chinese).
    [34] SUDESH K, ABE H, DOI Y. Synthesis, structure and properties of polyhydroxyalkanoates:biological polyesters[J]. Progress in Polymer Science, 2000, 25(10):1503-1555.
    [35] HUISMAN GW, de LEEUW O, EGGINK G, WITHOLT B. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads[J]. Applied and Environmental Microbiology, 1989, 55(8):1949-1954.
    [36] OLIVERA ER, ARCOS M, NAHARRO G, LUENGO JM. Unusual PHA Biosynthesis[M]//Microbiology Monographs. Berlin, Heidelberg:Springer Berlin Heidelberg, 2009:133-186.
    [37] HAZER DB, KıLıÇAY E, HAZER B. Poly(3-hydroxyalkanoate)s:diversification and biomedical applications[J]. Materials Science and Engineering:C, 2012, 32(4):637-647.
    [38] ZHOU Q, SHI ZY, MENG DC, WU Q, CHEN JC, CHEN GQ. Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4- hydroxybutyrate) copolymer by recombinant Escherichia coli[J]. Metabolic Engineering, 2011, 13(6):777-785.
    [39] CHOI SY, CHO IJ, LEE Y, KIM YJ, KIM KJ, LEE SY. Microbial polyhydroxyalkanoates and nonnatural polyesters[J]. Advanced Materials, 2020, 32(35):e1907138.
    [40] ANDERSON AJ, DAWES EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates[J]. Microbiological Reviews, 1990, 54(4):450-472.
    [41] CHEN X, YIN J, YE J, ZHANG H, CHE X, MA Y, LI M, WU LP, CHEN GQ. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[J]. Bioresource Technology, 2017, 244:534-541.
    [42] SAITO Y, DOI Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans[J]. International Journal of Biological Macromolecules, 1994, 16(2):99-104.
    [43] MEEREBOER KW, MISRA M, MOHANTY AK. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites[J]. Green Chemistry, 2020, 22(17):5519-5558.
    [44] SONG JH, MURPHY RJ, NARAYAN R, DAVIES GBH. Biodegradable and compostable alternatives to conventional plastics[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2127-2139.
    [45] ABE H, DOI Y. Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers[J]. International Journal of Biological Macromolecules, 1999, 25(1/2/3):185-192.
    [46] KASUYA K, OHURA T, MASUDA K, DOI Y. Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases[J]. International Journal of Biological Macromolecules, 1999, 24(4):329-336.
    [47] NEVES A, MÜLLER J. Use of enzymes in extraction of polyhydroxyalkanoates produced by Cupriavidus necator[J]. Biotechnology Progress, 2012, 28(6):1575-1580.
    [48] FENG SS, YUE Y, CHEN JF, ZHOU J, LI YW, ZHANG QZ. Biodegradation mechanism of polycaprolactone by a novel esterase MGS0156:a QM/MM approach[J]. Environmental Science:Processes & Impacts, 2020, 22(12):2332-2344.
    [49] SUZUKI M, TACHIBANA Y, KASUYA KI. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments[J]. Polymer Journal, 2021, 53(1):47-66.
    [50] WILLIAMS DF. On the mechanisms of biocompatibility[J]. Biomaterials, 2008, 29(20):2941-2953.
    [51] LIM J, YOU ML, LI J, LI ZB. Emerging bone tissue engineering via polyhydroxyalkanoate (PHA)-based scaffolds[J]. Materials Science and Engineering:C, 2017, 79:917-929.
    [52] SHISHATSKAYA EI, NIKOLAEVA ED, VINOGRADOVA ON, VOLOVA TG. Experimental wound dressings of degradable PHA for skin defect repair[J]. Journal of Materials Science:Materials in Medicine, 2016, 27(11):1-16.
    [53] KARIMI M, BIAZAR E, KESHEL SH, RONAGHI A, DOOSTMOHAMADPOUR J, JANFADA A, MONTAZERI A. Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with schwann cell as artificial nerve graft[J]. ASAIO Journal, 2014, 60(2):224-233.
    [54] NEWMAN JC, VERDIN E. β-hydroxybutyrate:a signaling metabolite[J]. Annual Review of Nutrition, 2017, 37:51-76.
    [55] YAN X, LIU XY, ZHANG D, ZHANG YD, LI ZH, LIU X, WU FQ, CHEN GQ. Construction of a sustainable 3-hydroxybutyrate-producing probiotic Escherichia coli for treatment of colitis[J]. Cellular & Molecular Immunology, 2021, 18:2344-2357.
    [56] HERTZ L, CHEN Y, WAAGEPETERSEN HS. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function[J]. Journal of Neurochemistry, 2015, 134(1):7-20.
    [57] McNALLY MA, HARTMAN AL. Ketone bodies in epilepsy[J]. Journal of Neurochemistry, 2012, 121(1):28-35.
    [58] MARTIN DP, WILLIAMS SF. Medical applications of poly-4-hydroxybutyrate:a strong flexible absorbable biomaterial[J]. Biochemical Engineering Journal, 2003, 16(2):97-105.
    [59] UTOMO RNC, LI WJ, TISO T, EBERLEIN C, DOEKER M, HEIPIEPER HJ, JUPKE A, WIERCKX N, BLANK LM. Defined microbial mixed culture for utilization of polyurethane monomers[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47):17466-17474.
    [60] KIM DH, HAN DO, IN SHIM K, KIM JK, PELTON JG, RYU MH, JOO JC, HAN JW, KIM HT, KIM KH. One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine[J]. ACS Catalysis, 2021, 11(7):3996-4008.
    [61] GUZIK MW, KENNY ST, DUANE GF, CASEY E, WOODS T, BABU RP, NIKODINOVIC-RUNIC J, MURRAY M, O'CONNOR KE. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate[J]. Applied Microbiology and Biotechnology, 2014, 98(9):4223-4232.
    [62] JOHNSTON B, RADECKA I, CHIELLINI E, BARSI D, ILIEVAⅥ, SIKORSKA W, MUSIOŁ M, ZIĘBA M, CHABER P, MAREK AA, MENDREK B, EKERE AI, ADAMUS G, KOWALCZUK M. Mass spectrometry reveals molecular structure of polyhydroxyalkanoates attained by bioconversion of oxidized polypropylene waste fragments[J]. Polymers, 2019, 11(10):1580.
    [63] YAN X, LIU X, YU LP, WU FQ, JIANG XR, CHEN GQ. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis[J]. Metabolic Engineering, 2022, 72:275-288.
    [64] KENNY ST, RUNIC JN, KAMINSKY W, WOODS T, BABU RP, O'CONNOR KE. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate[J]. Applied Microbiology and Biotechnology, 2012, 95(3):623-633.
    [65] ACKERMANN YS, LI WJ, OP de HIPT L, NIEHOFF PJ, CASEY W, POLEN T, KÖBBING S, BALLERSTEDT H, WYNANDS B, O'CONNOR K, BLANK LM, WIERCKX N. Engineering adipic acid metabolism in Pseudomonas putida[J]. Metabolic Engineering, 2021, 67:29-40.
    [66] JOHNSTON B, RADECKA I, HILL D, CHIELLINI E, ILIEVA V, SIKORSKA W, MUSIOŁ M, ZIĘBA M, MAREK A, KEDDIE D, MENDREK B, DARBAR S, ADAMUS G, KOWALCZUK M. The microbial production of polyhydroxyalkanoates from waste polystyrene fragments attained using oxidative degradation[J]. Polymers, 2018, 10(9):957.
    [67] WANG Q, ZHUANG QQ, LIANG QF, QI QS. Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2013, 97(8):3301-3307.
    [68] TISO T, NARANCIC T, WEI R, POLLET E, BEAGAN N, SCHRÖDER K, HONAK A, JIANG MY, KENNY ST, WIERCKX N, PERRIN R, AVÉROUS L, ZIMMERMANN W, O'CONNOR K, BLANK LM. Towards bio-upcycling of polyethylene terephthalate[J]. Metabolic Engineering, 2021, 66:167-178.
    [69] CHENG ML, LIN CC, SU HL, CHEN PY, SUN YM. Processing and characterization of electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanofibrous membranes[J]. Polymer, 2008, 49(2):546-553.
    [70] THELLEN C, COYNE M, FROIO D, AUERBACH M, WIRSEN C, RATTO JA. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films[J]. Journal of Polymers and the Environment, 2008, 16(1):1-11.
    [71] SOMBATMANKHONG K, SANCHAVANAKIT N, PAVASANT P, SUPAPHOL P. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend[J]. Polymer, 2007, 48(5):1419-1427.
    [72] ZHAO XH, NIU YN, MI CH, GONG HL, YANG XY, CHENG JSY, ZHOU ZQ, LIU JX, PENG XL, WEI DX. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering[J]. Journal of Polymer Science, 2021, 59(18):1994-2013.
    [73] SHARMA V, SEHGAL R, GUPTA R. Polyhydroxyalkanoate (PHA):properties and modifications[J]. Polymer, 2021, 212:123161.
    [74] MOUSAVIOUN P, GEORGE GA, DOHERTY W OS. Environmental degradation of lignin/poly (hydroxybutyrate) blends[J]. Polymer Degradation and Stability, 2012, 97(7):1114-1122.
    [75] KAI WH, YONG H, ASAKAWA N, INOUE Y. Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate)[J]. Journal of Applied Polymer Science, 2004, 94(6):2466-2474.
    [76] MÁRMOL G, GAUSS C, FANGUEIRO R. Potential of cellulose microfibers for PHA and PLA biopolymers reinforcement[J]. Molecules, 2020, 25(20):4653.
    [77] GODBOLE S. Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films[J]. Bioresource Technology, 2003, 86(1):33-37.
    [78] BURZIC I, PRETSCHUH C, KAINEDER D, EDER G, SMILEK J, MÁSILKO J, KATERYNA W. Impact modification of PLA using biobased biodegradable PHA biopolymers[J]. European Polymer Journal, 2019, 114:32-38.
    [79] ABE H, DOI Y, KUMAGAI Y. Synthesis and characterization of poly[(R,S)-3-hydroxybutyrate-b-6- hydroxyhexanoate] as a compatibilizer for a biodegradable blend of poly[(R)-3-hydroxybutyrate] and poly(6-hydroxyhexanoate)[J]. Macromolecules, 1994, 27(21):6012-6017.
    [80] TERESA REBOCHO A, PEREIRA JR, NEVES LA, ALVES VD, SEVRIN C, GRANDFILS C, FREITAS F, REIS MAM. Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste[J]. Bioengineering, 2020, 7(2):34.
    [81] VERHOOGT H, RAMSAY BA, FAVIS BD. Polymer blends containing poly(3-hydroxyalkanoate)S[J]. Polymer, 1994, 35(24):5155-5169.
    [82] CHE XM, WEI DX, CHEN GQ. Superhydrophobic polyhydroxyalkanoates:preparation and applications[J]. Biomacromolecules, 2019, 20(2):618-624.
    [83] BAKI H, ALEXANDER S. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications[J]. Applied Microbiology and Biotechnology, 2007, 74(1):1-12.
    [84] ARKIN AH, HAZER B. Chemical modification of chlorinated microbial polyesters[J]. Biomacromolecules, 2002, 3(6):1327-1335.
    [85] NKRUMAH AGYEEFI S, SCHOLZ C. Chemical modification of functionalized polyhydroxyalkanoates via "Click" chemistry:a proof of concept[J]. International Journal of Biological Macromolecules, 2017, 95:796-808.
    [86] LE GAL M, de ANDA AR, MICHELY L, COLIN CS, RENARD E, LANGLOIS V. Synthesis of fluorinated polyhydroxyalkanoates from marine bioresources as a promising biomaterial coating[J]. Biomacromolecules, 2021, 22(11):4510-4520.
    [87] RENARD E, POUX A, TIMBART L, LANGLOIS V, GUÉRIN P. Preparation of a novel artificial bacterial polyester modified with pendant hydroxyl groups[J]. Biomacromolecules, 2005, 6(2):891-896.
    [88] KWIECIEŃ M, ADAMUS G, KOWALCZUK M. Selective reduction of PHA biopolyesters and their synthetic analogues to corresponding PHA oligodiols proved by structural studies[J]. Biomacromolecules, 2013, 14(4):1181-1188.
    [89] TIMBART L, RENARD E, TESSIER M, LANGLOIS V. Monohydroxylated poly(3-hydroxyoctanoate) oligomers and its functionalized derivatives used as macroinitiators in the synthesis of degradable diblock copolyesters[J]. Biomacromolecules, 2007, 8(4):1255-1265.
    [90] LEE MY, PARK WH. Preparation of bacterial copolyesters with improved hydrophilicity by carboxylation[J]. Macromolecular Chemistry and Physics, 2000, 201(18):2771-2774.
    [91] KURTH N, RENARD E, BRACHET F, ROBIC D, GUERIN P, BOURBOUZE R. Poly (3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release[J]. Polymer, 2002, 43(4):1095-1101.
    [92] PARK WH, LENZ RW, GOODWIN S. Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid[J]. Macromolecules, 1998, 31(5):1480-1486.
    [93] PARKWH, LENZ RW, GOODWIN S. Epoxidation of bacterial polyesters with unsaturated side chains. Ⅲ. Crosslinking of epoxidized polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1998, 36(13):2389-2396.
    [94] YAO H, WU LP, CHEN GQ. Synthesis and characterization of electroconductive PHA-graftgraphene nanocomposites[J]. Biomacromolecules, 2019, 20(2):645-652.
    [95] YAO H, WEI DX, CHE XM, CAI LW, TAO L, LIU L, WU LP, CHEN GQ. Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2-dimethylamino-eth ylmethacrylate) for controllable protein adsorption[J].Polymer Chemistry, 2016, 7(38):5957-5965.
    [96] MA YM, WEI DX, YAO H, WU LP, CHEN GQ. Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate-graft-poly (N-isopropylacrylamide)[J]. Biomacromolecules, 2016, 17(8):2680-2690.
    [97] ZHANG X, LI ZH, CHE XM, YU LP, JIA WY, SHEN R, CHEN JC, MA YM, CHEN GQ. Synthesis and characterization of polyhydroxyalkanoate organo/hydrogels[J]. Biomacromolecules, 2019, 20(9):3303-3312.
    [98] YU LP, ZHANG X, WEI DX, WU Q, JIANG XR, CHEN GQ. Highly efficient fluorescent material based on rare-earth-modified polyhydroxyalkanoates[J]. Biomacromolecules, 2019, 20(9):3233-3241.
    [99] WU CS, WU DY, WANG SS. Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites[J]. Polymer Bulletin, 2021, 78(9):4817-4834.
    [100] XUE Q, LIU XB, LAO YH, WU LP, WANG D, ZUO ZQ, CHEN JY, HOU J, BEI YY, WU XF, LEONG KW, XIANG H, HAN J. Anti-infective biomaterials with surface-decorated tachyplesin I[J]. Biomaterials, 2018, 178:351-362.
    [101] YAO YC, ZHAN XY, ZHANG J, ZOU XH, WANG ZH, XIONG YC, CHEN J, CHEN GQ. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands[J]. Biomaterials, 2008, 29(36):4823-4830.
    [102] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3):1340-1350.
    [103] YU LP, WU FQ, CHEN GQ. Next-generation industrial biotechnology-transforming the current industrial biotechnology into competitive processes[J]. Biotechnology Journal, 2019, 14(9):1800437.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张宗豪,何宏韬,张旭,郑爽,郑陶然,刘絮,陈国强. 塑料的降解与可降解塑料——聚羟基脂肪酸酯的合成[J]. 生物工程学报, 2023, 39(5): 2053-2069

复制
分享
文章指标
  • 点击次数:475
  • 下载次数: 1351
  • HTML阅读次数: 1426
  • 引用次数: 0
历史
  • 收稿日期:2023-01-14
  • 在线发布日期: 2023-05-08
  • 出版日期: 2023-05-25
文章二维码
您是第6350793位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司