来源于海洋宏基因组塑料降解酶Ple629的耐热性提升改造
作者:
基金项目:

国家重点研发计划(2021YFC2103600);天津市合成生物技术创新能力提升行动(TSBICIP-PTJJ-008,TSBICIPKJGG-001,TSBICIP-IJCP-003)


Engineering the plastic degradation enzyme Ple629 from marine consortium to improve its thermal stability
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    石化来源的聚酯类塑料如聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)以及聚己二酸/对苯二甲酸丁二醇酯(polybutylene adipate terephthalate, PBAT)等已被广泛使用,但由于它们在自然界中难以降解或生物降解周期较长导致了严重的环境污染,因此对这些塑料废弃物的处理是亟待解决的问题之一。从循环经济的角度考虑,利用生物酶法对聚酯类塑料如PET或PBAT等的废弃物进行解聚,再将解聚产物进行循环利用,是一个很有潜力的研究方向。探究近年来关于聚酯塑料降解酶的报道发现,高活性且耐高温的降解酶会有更大的潜在优势。来自海洋微生物宏基因组的中温塑料降解酶Ple629,在常温下对聚酯类塑料PET和PBAT均有较好的降解活力,但由于不耐受高温,限制了其潜在应用。在前期获得Ple629三维结构的基础上,本研究基于结构比对及能量设计,找到了一些潜在提升其热稳定性的位点进行改造设计,并对突变体进行了表达纯化和热稳定性测定。突变体V80C和D226C/S281C的熔点温度(Tm)值分别提升了5.2 °C和6.9 °C,突变体D226C/S281C的活性也比野生型酶提高了1.5倍,为后续对Ple629的进一步改造提供了思路和依据。

    Abstract:

    Petrochemical-derived polyester plastics such as polyethylene terephthalate (PET) and polybutylene adipate terephthalate (PBAT) have been widely used. However, the difficulty to be degraded in nature (PET) or the long biodegradation cycle (PBAT) resulted in serious environmental pollution. In this connection, treating these plastic wastes properly becomes one of the challenges of environment protection. From the perspective of circular economy, biologically depolymerizing the waste of polyester plastics and reusing the depolymerized products is one of the most promising directions. Recent years have seen many reports on polyester plastics degrading organisms and enzymes. Highly efficient degrading enzymes, especially those with better thermal stability, will be conducive to their application. The mesophilic plastic-degrading enzyme Ple629 from the marine microbial metagenome is capable of degrading PET and PBAT at room temperature, but it cannot tolerate high temperature, which hampers its potential application. On the basis of the three-dimensional structure of Ple629 obtained from our previous study, we identified some sites which might be important for its thermal stability by structural comparison and mutation energy analysis. We carried out transformation design, and performed expression, purification and thermal stability determination of the mutants. The melting temperature (Tm) values of mutants V80C and D226C/S281C were increased by 5.2 °C and 6.9 °C, respectively, and the activity of mutant D226C/S281C was also increased by 1.5 times compared with that of the wild-type enzyme. These results provide useful information for future engineering and application of Ple629 in polyester plastic degradation.

    参考文献
    [1] RODRIGUES MO, ABRANTES N, GONÇALVES FJM, NOGUEIRA H, MARQUES JC, GONÇALVES AMM. Impacts of plastic products used in daily life on the environment and human health:what is known?[J]. Environmental Toxicology and Pharmacology, 2019, 7(2):103239-103299.
    [2] NICHOLSON SR, RORRER NA, CARPENTER AC, BECKHAM GT. Manufacturing energy and greenhouse gas emissions associated with plastics consumption[J]. Joule, 2021, 5(3):673-686.
    [3] JIANG L, WOLCOTT MP, ZHANG JW. Study of biodegradable polylactide/poly(butylene adipate-co- terephthalate) blends[J]. Biomacromolecules, 2006, 7(1):199-207.
    [4] WITT U, YAMAMOTO M, SEELIGER U, MÜLLER RJ, WARZELHAN V. Biodegradable polymeric materials-not the origin but the chemical structure determines biodegradability[J]. Angewandte Chemie International Edition, 1999, 38(10):1438-1442.
    [5] GUPTA A, CHUDASAMA B, CHANG B, MEKONNEN T. Robust and sustainable PBAT-Hemp residue biocomposites:reactive extrusion compatibilization and fabrication[J]. Composites Science and Technology, 2021, 215:109014.
    [6] PINHEIRO IF, FERREIRA FV, SOUZA DHS, GOUVEIA RF, LONA LMF, MORALES AR, MEI LHI. Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals[J]. European Polymer Journal, 2017, 97:356-365.
    [7] PAVON C, ALDAS M, dela ROSA-RAMÍREZ H, LÓPEZ-MARTÍNEZ J, ARRIETA MP. Improvement of PBAT processability and mechanical performance by blending with pine resin derivatives for injection moulding rigid packaging with enhanced hydrophobicity[J]. Polymers, 2020, 12(12):2891.
    [8] PAL AK, WU F, MISRA M, MOHANTY AK. Reactive extrusion of sustainable PHBV/PBAT-based nanocomposite films with organically modified nanoclay for packaging applications:compression moulding vs. cast film extrusion[J]. Composites Part B:Engineering, 2020, 198:108141.
    [9] PAGNO V, MÓDENES AN, DRAGUNSKI DC, DENISE FIORENTIN-FERRARI L, CAETANO J, GUELLIS C, GONÇALVES BC, dos ANJOS EV, PAGNO F, MARTINELLI V. Heat treatment of polymeric PBAT/PCL membranes containing activated carbon from Brazil nutshell biomass obtained by electrospinning and applied in drug removal[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104159.
    [10] OGUZ H, DOGAN C, KARA D, OZEN ZT, OVALI D, NOFAR M. Development of PLA-PBAT and PLA-PBSA bio-blends:effects of processing type and PLA crystallinity on morphology and mechanical properties[C]//AIP Conference Proceedings. Dresden, Germany. Author(s), 2019:0300031-0300035.
    [11] NUNES FC, RIBEIRO KC, MARTINI FA, BARRIONI BR, SANTOS JPF, CARVALHO B. PBAT/PLA/cellulose nanocrystals biocomposites compatibilized with polyethylene grafted maleic anhydride (PE-g-MA)[J]. Journal of Applied Polymer Science, 2021, 138(45):51342-51352.
    [12] NOBILE MR, CROCITTI A, MALINCONICO M, SANTAGATA G, CERRUTI P. Preparation and characterization of polybutylene succinate (PBS) and polybutylene adipate-terephthalate (PBAT) biodegradable blends[C]//AIP Conference Proceedings. Ischia, Italy. Author(s), 2018:0201801-0201804.
    [13] PIETROSANTO A, SCARFATO P, Di MAIO L, INCARNATO L. Development of eco-sustainable PBAT-based blown films and performance analysis for food packaging applications[J]. Materials, 2020, 13(23):5395.
    [14] GAMBARINI V, PANTOS O, KINGSBURY JM, WEAVER L, HANDLEY KM, LEAR G. Phylogenetic distribution of plastic-degrading microorganisms[J]. mSystems, 2021, 6(1):e01112-e01120.
    [15] KANWAL A, MIN Z, SHARAF F, LI CT. Screening and characterization of novel lipase producing Bacillus species from agricultural soil with high hydrolytic activity against PBAT poly (butylene adipate co terephthalate) co-polyesters[J]. Polymer Bulletin, 2022, 79(11):10053-10076.
    [16] KANWAL A, ZHANG M, SHARAF F, LI CT. Polymer pollution and its solutions with special emphasis on poly (butylene adipate terephthalate (PBAT))[J]. Polymer Bulletin, 2022, 79(11):9303-9330.
    [17] QI X, REN YW, WANG XZ. New advances in the biodegradation of poly(lactic) acid[J]. International Biodeterioration & Biodegradation, 2017, 117:215-223.
    [18] KAKADELLIS S, ROSETTO G. Achieving a circular bioeconomy for plastics[J]. Science, 2021, 373(6550):49-50.
    [19] 段广宇. Carbios:消费后聚酯的生物循环再利用[J]. 国际纺织导报, 2019, 47(6):59. DUAN GY. Carbios:biorecycling of post-consumer polyester[J]. Melliand China, 2019, 47(6):59(in Chinese).
    [20] MÜLLER RJ, SCHRADER H, PROFE J, DRESLER K, DECKWER WD. Enzymatic degradation of poly(ethylene terephthalate):rapid hydrolyse using a hydrolase from T. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17):1400-1405.
    [21] LIU C, SHI C, ZHU S, WEI R, YIN C. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis[J]. Biochemical and Biophysical Research Communications, 2019, 508(1):289-294.
    [22] 陈纯琪, 韩旭, 刘卫东, 马立新, 刘珂, 郭瑞庭. 基于结构改造来源于大阪伊德氏杆菌201-F6的PET水解酶[J]. 生物工程学报, 2021, 37(9):3268-3275. CHEN CQ, HAN X, LIU WD, MA LX, LIU K, GUO RT. Structure-based engineering of PET hydrolase from Ideonella sakaiensis[J]. Chinese Journal of Biotechnology, 2021, 37(9):3268-3275(in Chinese).
    [23] 李磊, 高鑫, 齐宏斌, 李超, 路福平, 毛淑红, 秦慧民. 现代生物技术推动塑料中聚对苯二甲酸乙二酯绿色降解的研究进展[J]. 合成生物学, 2022, 3(4):763-780(in Chinese). LI L, GAO X, QI HB, LI C, LU FP, MAO SH, QIN HM. Research progress of modern biotechnology- promoted green degradation of polyethylene terephthalate in plastics[J]. Synthetic Biology Journal, 2022, 3(4):763-780(in Chinese).
    [24] KAWAI F. The current state of research on PET hydrolyzing enzymes available for biorecycling[J]. Catalysts, 2021, 11(2):206.
    [25] SON HF, CHO IJ, JOO S, SEO H, SAGONG HY, CHOI SY, LEE SY, KIM KJ. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019, 9(4):3519-3526.
    [26] BROTT S, PFAFF L, SCHURICHT J, SCHWARZ JN, BÖTTCHER D, BADENHORST CPS, WEI R, BORNSCHEUER UT. Engineering and evaluation of thermostable IsPETase variants for PET degradation[J]. Engineering in Life Sciences, 2022, 22(3/4):192-203.
    [27] WIJMA HJ, FLOOR RJ, JANSSEN DB. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability[J]. Current Opinion in Structural Biology, 2013, 23(4):588-594.
    [28] QIAO ZN, XU MJ, SHAO ML, ZHAO YX, LONG MF, YANG TW, ZHANG X, YANG ST, NAKANISHI H, RAO ZM. Engineered disulfide bonds improve thermostability and activity of L-isoleucine hydroxylase for efficient 4-HIL production in Bacillus subtilis 168[J]. Engineering in Life Sciences, 2020, 20(1/2):7-16.
    [29] JEONG M, KIM S, YUN C, CHOI Y, CHO S. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236[J]. Journal of Biotechnology, 2007, 127(2):300-309.
    [30] THEN J, WEI R, OESER T, BARTH M, BELISÁRIO-FERRARI MR, SCHMIDT J, ZIMMERMANN W. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca[J]. Biotechnology Journal, 2015, 10(4):592-598.
    [31] THEN J, WEI R, OESER T, GERDTS A, SCHMIDT J, BARTH M, ZIMMERMANN W. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate[J]. FEBS Open Bio, 2016, 6(5):425-432.
    [32] WANG R, WANG S, XU Y, YU XW. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations[J]. International Journal of Biological Macromolecules, 2020, 160:1189-1200.
    [33] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3):1340-1350.
    [34] LU HY, DIAZ DJ, CZARNECKI NJ, ZHU CZ, KIM W, SHROFF R, ACOSTA DJ, ALEXANDER BR, COLE HO, ZHANG Y, LYND NA, ELLINGTON AD, ALPER HS. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907):662-667.
    [35] MEYER-CIFUENTES IE, WERNER J, JEHMLICH N, WILL SE, NEUMANN-SCHAAL M, ÖZTÜRK B. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium[J]. Nature Communications, 2020, 11:5790.
    [36] MEYER-CIFUENTES IE, WU P, ZHAO YP, LIU WD, NEUMANN-SCHAAL M, PFAFF L, BARYS J, LI ZS, GAO J, HAN X, BORNSCHEUER UT, WEI R, ÖZTÜRK B. Molecular and biochemical differences of the tandem and cold-adapted PET hydrolases Ple628 and Ple629, isolated from a marine microbial consortium[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:930140.
    [37] LI ZS, ZHAO YP, WU P, WANG H, LI Q, GAO J, QIN HM, WEI HL, BORNSCHEUER UT, HAN X, WEI R, LIU WD. Structural insight and engineering of a plastic degrading hydrolase Ple629[J]. Biochemical and Biophysical Research Communications, 2022, 626:100-106.
    [38] 李志帅, 高健, 陈纯琪, 郭瑞庭, 刘卫东, 韩旭. 聚对苯二甲酸乙二醇酯(PET)塑料水解酶结构、功能及改造[J]. 生物加工过程, 2022, 20(4):374-384. LI ZS, GAO J, CHEN CQ, GUO RT, LIU WD, HAN X. Structure, function and application of hydrolases for polyethylene terephthalate (PET) degradation[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(4):374-384(in Chinese).
    [39] OLLIS DL, CARR PD. α/β hydrolase fold:an update[J]. Protein & Peptide Letters, 2009, 16(10):1137-1148.
    [40] GUEROIS R, NIELSEN JE, SERRANO L. Predicting changes in the stability of proteins and protein complexes:a study of more than 1000 mutations[J]. Journal of Molecular Biology, 2002, 320(2):369-387.
    [41] SCHYMKOWITZ J, BORG J, STRICHER F, NYS R, ROUSSEAU F, SERRANO L. The FoldX web server:an online force field[J]. Nucleic Acids Research, 2005, 33(suppl_2):W382-W388.
    [42] EMSLEY P, COWTAN K. Coot:model-building tools for molecular graphics[J]. Acta Crystallographica Section D Biological Crystallography, 2004, 60(12):2126-2132.
    [43] van D, LINDAHL E, HESS B, GROENHOF G, MARK AE, BERENDSEN HJC. GROMACS:fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16):1701-1718.
    [44] JORGENSEN WL, CHANDRASEKHAR J, MADURA JD, IMPEY RW, KLEIN ML. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2):926-935.
    [45] BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1):014101-014122.
    [46] BERENDSEN HJC, POSTMA JPM, van GUNSTEREN WF, DiNOLA A, HAAK JR. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8):3684-3690.
    [47] BERMAN HM, WESTBROOK J, FENG Z, GILLILAND G, BHAT TN, WEISSIG H, SHINDYALOV IN, BOURNE PE. The protein data bank[J]. Nucleic Acids Research, 2000, 28(1):235-242.
    [48] WEI YY, SWENSON L, CASTRO C, DEREWENDA U, MINOR W, ARAI H, AOKI J, INOUE K, SERVIN-GONZALEZ L, DEREWENDA ZS. Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases:Streptomyces exfoliatus lipase at 1.9å resolution[J]. Structure, 1998, 6(4):511-519.
    [49] NAKAMURA A, KOBAYASHI N, KOGA N, IINO R. Positive charge introduction on the surface of thermostabilized PET hydrolase facilitates PET binding and degradation[J]. ACS Catalysis, 2021, 11(14):8550-8564.
    [50] KITADOKORO K, THUMARAT U, NAKAMURA R, NISHIMURA K, KARATANI H, SUZUKI H, KAWAI F. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76Å resolution[J]. Polymer Degradation and Stability, 2012, 97(5):771-775.
    [51] ROTH C, WEI R, OESER T, THEN J, FÖLLNER C, ZIMMERMANN W, STRÄTER N. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca[J]. Applied Microbiology and Biotechnology, 2014, 98(18):7815-7823.
    [52] SULAIMAN S, YOU DJ, KANAYA E, KOGA Y, KANAYA S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase[J]. Biochemistry, 2014, 53(11):1858-1869.
    [53] MIYAKAWA T, MIZUSHIMA H, OHTSUKA J, ODA M, KAWAI F, TANOKURA M. Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190[J]. Applied Microbiology and Biotechnology, 2015, 99(10):4297-4307.
    [54] RIBITSCH D, HROMIC A, ZITZENBACHER S, ZARTL B, GAMERITH C, PELLIS A, JUNGBAUER A, ŁYSKOWSKI A, STEINKELLNER G, GRUBER K, TSCHELIESSNIG R, HERRERO ACERO E, GUEBITZ GM. Small cause, large effect:structural characterization of cutinases from Thermobifida cellulosilytica[J]. Biotechnology and Bioengineering, 2017, 114(11):2481-2488.
    [55] HAN X, LIU WD, HUANG JW, MA JT, ZHENG YY, KO TP, XU LM, CHENG YS, CHEN CC, GUO RT. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8:2106-2118.
    [56] CHEN CC, HAN X, LI X, JIANG PC, NIU D, MA LX, LIU WD, LI SY, QU YY, HU HB, MIN J, YANG Y, ZHANG LL, ZENG W, HUANG JW, DAI LH, GUO RT. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis[J]. Nature Catalysis, 2021, 4(5):425-430.
    [57] BOLLINGER A, THIES S, KNIEPS-GRÜNHAGEN E, GERTZEN C, KOBUS S, HÖPPNER A, FERRER M, GOHLKE H, SMITS SHJ, JAEGER KE. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri-structural and functional insights[J]. Frontiers in Microbiology, 2020, 11:114-118.
    [58] SAGONG H, SON H, SEO H, HONG, H, LEE D, KIM K. Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis[J]. Journal of Hazardous Materials, 2021, 416:126075-126084.
    [59] PFAFF L, GAO J, LI ZS, JÄCKERING A, WEBER G, MICAN J, CHEN YP, DONG WL, HAN X, FEILER CG, AO YF, BADENHORST CPS, BEDNAR D, PALM GJ, LAMMERS M, DAMBORSKY J, STRODEL B, LIU WD, BORNSCHEUER UT, WEI R. Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase[J]. ACS Catalysis, 2022, 12(15):9790-9800.
    [60] TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉ I, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802):216-219.
    [61] ZENG W, LI XQ, YANG YY, MIN J, HUANG JW, LIU WD, NIU D, YANG XC, HAN X, ZHANG LL, DAI LH, CHEN CC, GUO RT. Substrate-binding mode of a thermophilic PET hydrolase and engineering the enzyme to enhance the hydrolytic efficacy[J]. ACS Catalysis, 2022, 12(5):3033-3040.
    [62] ZHONG-JOHNSON EZL, VOIGT CA, SINSKEY AJ. An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films[J]. Scientific Reports, 2021, 11:928-934.
    [63] 张碧飞, 吕成, 张萌, 许菲. 基于多重计算设计策略提高奇异变形杆菌脂肪酶的热稳定性[J]. 生物工程学报, 2022, 38(4):1537-1553. ZHANG BF, LÜ C, ZHANG M, XU F. Improving the thermal stability of Proteus mirabilis lipase based on multiple computational design strategies[J]. Chinese Journal of Biotechnology, 2022, 38(4):1537-1553(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵夷培,王浩,武攀,李志帅,刘夫锋,顾群,刘卫东,高健,韩旭. 来源于海洋宏基因组塑料降解酶Ple629的耐热性提升改造[J]. 生物工程学报, 2023, 39(5): 2040-2052

复制
分享
文章指标
  • 点击次数:398
  • 下载次数: 1201
  • HTML阅读次数: 807
  • 引用次数: 0
历史
  • 收稿日期:2022-12-29
  • 在线发布日期: 2023-05-08
  • 出版日期: 2023-05-25
文章二维码
您是第5991992位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司