聚对苯二甲酸乙二醇酯水解酶研究进展
作者:
基金项目:

国家重点研发计划(2019YFA0706900)


Advances in poly(ethylene terephthalate) hydrolases
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [82]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    塑料自20世纪首次合成以来给人类生活带来了极大的便利。然而,塑料稳定的高分子结构导致了塑料废弃物的持续堆积,对生态环境和人类健康均造成严重威胁。聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate), PET]是产量最高的一种聚酯类塑料,近年来PET水解酶的相关研究展现出生物酶法对塑料进行降解、回收的巨大潜力,也为塑料生物降解机制研究建立了参考范例。本文综述了不同微生物来源的PET水解酶及其PET降解能力,阐述了最具代表性的PET水解酶—IsPETase降解PET的催化机理,并总结了近年来通过酶工程改造而获得的高效降解酶,为未来的PET降解机制研究、PET高效降解酶的进一步挖掘和改造提供参考。

    Abstract:

    Plastics have brought invaluable convenience to human life since it was firstly synthesized in the last century. However, the stable polymer structure of plastics led to the continuous accumulation of plastic wastes, which poses serious threats to the ecological environment and human health. Poly(ethylene terephthalate) (PET) is the most widely produced polyester plastics. Recent researches on PET hydrolases have shown great potential of enzymatic degradation and recycling of plastics. Meanwhile, the biodegradation pathway of PET has become a reference model for the biodegradation of other plastics. This review summarizes the sources of PET hydrolases and their degradation capacity, degradation mechanism of PET by the most representative PET hydrolase—IsPETase, and recently reported highly efficient degrading enzymes through enzyme engineering. The advances of PET hydrolases may facilitate the research on the degradation mechanism of PET and further exploration and engineering of efficient PET degradation enzymes.

    参考文献
    [1] LEBRETON L, ANDRADY A. Future scenarios of global plastic waste generation and disposal[J]. Palgrave Communications, 2019, 5:6.
    [2] Plastics Europe Market Research Group (PEMRG) and Conversion Market & Strategy GmbH. Plastics Europe Plastics the Fact 2021[EB/OL].[2022-11-16]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/.
    [3] JENNER LC, ROTCHELL JM, BENNETT RT, COWEN M, TENTZERIS V, SADOFSKY LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831:154907.
    [4] GREGORY MR. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2013-2025.
    [5] EIAMTHONG B, MEESAWAT P, WONGSATIT T, JITDEE J, SANGSRI R, PATCHSUNG M, APHICHO K, SURARITDECHACHAI S, HUGUENIN-DEZOT N, TANG S, SUGINTA W, PAOSAWATYANYONG B, BABU MM, CHIN JW, PAKOTIPRAPHA D, BHANTHUMNAVIN W, UTTAMAPINANT C. Discovery and genetic code expansion of a polyethylene terephthalate (PET) hydrolase from the human saliva metagenome for the degradation and bio-functionalization of PET[J]. Angewandte Chemie (International Ed in English), 2022, 61(37):e202203061.
    [6] CLERE IK, AHMMED F, REMOTO PIJG, FRASER- MILLER SJ, GORDON KC, KOMYAKOVA V, ALLAN BJM. Quantification and characterization of microplastics in commercial fish from southern New Zealand[J]. Marine Pollution Bulletin, 2022, 184:114121.
    [7] XU S, MA J, JI R, PAN K, MIAO AJ. Microplastics in aquatic environments:occurrence, accumulation, and biological effects[J]. Science of the Total Environment, 2020, 703:134699.
    [8] WEBB H, ARNOTT J, CRAWFORD R, IVANOVA E. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate)[J]. Polymers, 2012, 5(1):1-18.
    [9] YAN ZH, LIU YF, ZHANG T, ZHANG FM, REN HQ, ZHANG Y. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1):414-421.
    [10] LIN SY, ZHANG HN, WANG C, SU XL, SONG YY, WU PF, YANG Z, WONG MH, CAI ZW, ZHENG CM. Metabolomics reveal nanoplastic-induced mitochondrial damage in human liver and lung cells[J]. Environmental Science & Technology, 2022, 56(17):12483-12493.
    [11] JAMBECK JR, GEYER R, WILCOX C, SIEGLER TR, PERRYMAN M, ANDRADY A, NARAYAN R, LAW KL. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771.
    [12] GEYER R, JAMBECK JR, LAW KL. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
    [13] BELL EL, SMITHSON R, KILBRIDE S, FOSTER J, HARDY FJ, RAMACHANDRAN S, TEDSTONE AA, HAIGH SJ, GARFORTH AA, DAY PJR, LEVY C, SHAVER MP, GREEN AP. Directed evolution of an efficient and thermostable PET depolymerase[J]. Nature Catalysis, 2022, 5(8):673-681.
    [14] MARSHALL I, TODD A. The thermal degradation of polyethylene terephthalate[J]. Transactions of the Faraday Society, 1953, 49:67-78.
    [15] PASZUN D, SPYCHAJ T. Chemical recycling of poly(ethylene terephthalate)[J]. Industrial & Engineering Chemistry Research, 1997, 36(4):1373-1383.
    [16] GEYER B, LORENZ G, KANDELBAUER A. Recycling of poly(ethylene terephthalate)-a review focusing on chemical methods[J]. Express Polymer Letters, 2016, 10(7):559-586.
    [17] RAHIMI A, GARCÍA JM. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1:0046.
    [18] SINGH JADAUN J, BANSAL S, SONTHALIA A, RAI AK, SINGH SP. Biodegradation of plastics for sustainable environment[J]. Bioresource Technology, 2022, 347:126697.
    [19] AHMED T, SHAHID M, AZEEM F, RASUL I, ALI SHAH A, NOMAN M, HAMEED A, MANZOOR N, MANZOOR I, MUHAMMAD S. Biodegradation of plastics:current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research, 2018, 25(8):7287-7298.
    [20] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278):1196-1199.
    [21] CARR CM, CLARKE DJ, DOBSON ADW. Microbial polyethylene terephthalate hydrolases:current and future perspectives[J]. Frontiers in Microbiology, 2020, 11:571265.
    [22] TANIGUCHI I, YOSHIDA S, HIRAGA K, MIYAMOTO K, KIMURA Y, ODA K. Biodegradation of PET:current status and application aspects[J]. ACS Catalysis, 2019, 9(5):4089-4105.
    [23] KAWAI F, ODA M, TAMASHIRO T, WAKU T, TANAKA N, YAMAMOTO M, MIZUSHIMA H, MIYAKAWA T, TANOKURA M. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190[J]. Applied Microbiology and Biotechnology, 2014, 98(24):10053-10064.
    [24] MÜLLER RJ, SCHRADER H, PROFE J, DRESLER K, DECKWER WD. Enzymatic degradation of poly(ethylene terephthalate):rapid hydrolyse using a hydrolase from T. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17):1400-1405.
    [25] GOMILA M, MULET M, LALUCAT J, GARCÍA-VALDÉS E. Draft genome sequence of the marine bacterium Pseudomonas aestusnigri VGXO14T[J]. Genome Announcements, 2017, 5(32):e00765-e00717.
    [26] BOLLINGER A, THIES S, KNIEPS-GRÜNHAGEN E, GERTZEN C, KOBUS S, HÖPPNER A, FERRER M, GOHLKE H, SMITS SHJ, JAEGER KE. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri-structural and functional insights[J]. Frontiers in Microbiology, 2020, 11:114.
    [27] SAGONG HY, SON HF, SEO H, HONG H, LEE D, KIM KJ. Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis[J]. Journal of Hazardous Materials, 2021, 416:126075.
    [28] SAGONG HY, KIM S, LEE D, HONG H, LEE SH, SEO H, KIM KJ. Structural and functional characterization of an auxiliary domain-containing PET hydrolase from Burkholderiales bacterium[J]. Journal of Hazardous Materials, 2022, 429:128267.
    [29] RONKVIST ÅM, XIE WC, LU WH, GROSS RA. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009, 42(14):5128-5138.
    [30] KIM DW, AHN JH, CHA CJ. Biodegradation of plastics:mining of plastic-degrading microorganisms and enzymes using metagenomics approaches[J]. Journal of Microbiology, 2022, 60(10):969-976.
    [31] PUROHIT J, CHATTOPADHYAY A, TELI B. Metagenomic exploration of plastic degrading microbes for biotechnological application[J]. Current Genomics, 2020, 21(4):253-270.
    [32] DANSO D, CHOW J, STREIT WR. Plastics:environmental and biotechnological perspectives on microbial degradation[J]. Applied and Environmental Microbiology, 2019, 85(19):e01095-e01019.
    [33] SULAIMAN S, YAMATO S, KANAYA E, KIM JJ, KOGA Y, TAKANO K, KANAYA S. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach[J]. Applied and Environmental Microbiology, 2012, 78(5):1556-1562.
    [34] SULAIMAN S, YOU DJ, KANAYA E, KOGA Y, KANAYA S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase[J]. Biochemistry, 2014, 53(11):1858-1869.
    [35] PFAFF L, GAO J, LI ZS, JÄCKERING A, WEBER G, MICAN J, CHEN YP, DONG WL, HAN X, FEILER CG, AO YF, BADENHORST CPS, BEDNAR D, PALM GJ, LAMMERS M, DAMBORSKY J, STRODEL B, LIU WD, BORNSCHEUER UT, WEI R. Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase[J]. ACS Catalysis, 2022, 12(15):9790-9800.
    [36] ZRIMEC J, KOKINA M, JONASSON S, ZORRILLA F, ZELEZNIAK A. Plastic-degrading potential across the global microbiome correlates with recent pollution trends[J]. mBio, 2021, 12(5):e0215521.
    [37] GAO RR, SUN CM. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene[J]. Journal of Hazardous Materials, 2021, 416:125928.
    [38] GAO RR, LIU R, SUN CM. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene[J]. Journal of Hazardous Materials, 2022, 431:128617.
    [39] DANSO D, SCHMEISSER C, CHOW J, ZIMMERMANN W, WEI R, LEGGEWIE C, LI XZ, HAZEN T, STREIT WR. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8):e02773-e02717.
    [40] MEYER-CIFUENTES IE, WERNER J, JEHMLICH N, WILL SE, NEUMANN-SCHAAL M, ÖZTÜRK B. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium[J]. Nature Communications, 2020, 11(1):5790.
    [41] ANANTHARAMAN K, BROWN CT, HUG LA, SHARON I, CASTELLE CJ, PROBST AJ, THOMAS BC, SINGH A, WILKINS MJ, KARAOZ U, BRODIE EL, WILLIAMS KH, HUBBARD SS, BANFIELD JF. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system[J]. Nature Communications, 2016, 7:13219.
    [42] CHEN CC, HAN X, LI X, JIANG PC, NIU D, MA LX, LIU WD, LI SY, QU YY, HU HB, MIN J, YANG Y, ZHANG LL, ZENG W, HUANG JW, DAI LH, GUO RT. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis[J]. Nature Catalysis, 2021, 4(5):425-430.
    [43] RIBITSCH D, HEUMANN S, TROTSCHA E, HERRERO ACERO E, GREIMEL K, LEBER R, BIRNER-GRUENBERGER R, DELLER S, EITELJOERG I, REMLER P, WEBER T, SIEGERT P, MAURER KH, DONELLI I, FREDDI G, SCHWAB H, GUEBITZ GM. Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis[J]. Biotechnology Progress, 2011, 27(4):951-960.
    [44] THEN J, WEI R, OESER T, BARTH M, BELISÁRIO-FERRARI MR, SCHMIDT J, ZIMMERMANN W. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca[J]. Biotechnology Journal, 2015, 10(4):592-598.
    [45] SONNENDECKER C, OESER J, RICHTER PK, HILLE P, ZHAO ZY, FISCHER C, LIPPOLD H, BLÁZQUEZ-SÁNCHEZ P, ENGELBERGER F, RAMÍREZ-SARMIENTO CA, OESER T, LIHANOVA Y, FRANK R, JAHNKE HG, BILLIG S, ABEL B, STRÄTER N, MATYSIK J, ZIMMERMANN W. Low carbon footprint recycling of post-consumer PET plastic with a metagenomic polyester hydrolase[J]. ChemSusChem, 2022, 15(9):e202101062.
    [46] MEYER CIFUENTES IE, WU P, ZHAO YP, LIU WD, NEUMANN-SCHAAL M, PFAFF L, BARYS J, LI ZS, GAO J, HAN X, BORNSCHEUER UT, WEI R, ÖZTÜRK B. Molecular and biochemical differences of the tandem and cold-adapted PET hydrolases Ple628 and Ple629, isolated from a marine microbial consortium[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:930140.
    [47] WANG XT, SONG CY, QI QS, ZHANG YM, LI RJ, HUO LJ. Biochemical characterization of a polyethylene terephthalate hydrolase and design of high-throughput screening for its directed evolution[J]. Engineering Microbiology, 2022, 2(2):100020.
    [48] HERRERO ACERO E, RIBITSCH D, STEINKELLNER G, GRUBER K, GREIMEL K, EITELJOERG I, TROTSCHA E, WEI R, ZIMMERMANN W, ZINN M, CAVACO-PAULO A, FREDDI G, SCHWAB H, GUEBITZ G. Enzymatic surface hydrolysis of PET:effect of structural diversity on kinetic properties of cutinases from Thermobifida[J]. Macromolecules, 2011, 44(12):4632-4640.
    [49] RIBITSCH D, ACERO EH, GREIMEL K, EITELJOERG I, TROTSCHA E, FREDDI G, SCHWAB H, GUEBITZ GM. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis[J]. Biocatalysis and Biotransformation, 2012, 30(1):2-9.
    [50] KAN YY, HE LH, LUO YZ, BAO R. IsPETase is a novel biocatalyst for poly(ethylene terephthalate) (PET) hydrolysis[J]. Chembiochem, 2021, 22(10):1706-1716.
    [51] WEI R, OESER T, THEN J, KÜHN N, BARTH M, SCHMIDT J, ZIMMERMANN W. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata[J]. AMB Express, 2014, 4:44.
    [52] CHERTKOV O, SIKORSKI J, NOLAN M, LAPIDUS A, LUCAS S, GLAVINA del RIO T, TICE H, CHENG JF, GOODWIN L, PITLUCK S, LIOLIOS K, IVANOVA N, MAVROMATIS K, MIKHAILOVA N, OVCHINNIKOVA G, PATI A, CHEN A, PALANIAPPAN K, DJAO ODN, LAND M, et al. Complete genome sequence of Thermomonospora curvata type strain (B9T)[J]. Standards in Genomic Sciences, 2011, 4(1):13-22.
    [53] RIBITSCH D, HERRERO ACERO E, GREIMEL K, DELLACHER A, ZITZENBACHER S, MAROLD A, DIAZ RODRIGUEZ R, STEINKELLNER G, GRUBER K, SCHWAB H, GUEBITZ GM. A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA)[J]. Polymers, 2012, 4(1):617-629.
    [54] LU HY, DIAZ DJ, CZARNECKI NJ, ZHU CZ, KIM W, SHROFF R, ACOSTA DJ, ALEXANDER BR, COLE HO, ZHANG Y, LYND NA, ELLINGTON AD, ALPER HS. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907):662-667.
    [55] SHIRKE AN, WHITE C, ENGLAENDER JA, ZWARYCZ A, BUTTERFOSS GL, LINHARDT RJ, GROSS RA. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation:mechanism and effect on PET hydrolysis[J]. Biochemistry, 2018, 57(7):1190-1200.
    [56] 李志帅, 高健, 陈纯琪, 郭瑞庭, 刘卫东, 韩旭. 聚对苯二甲酸乙二醇酯(PET)塑料水解酶结构、功能及改造[J]. 生物加工过程, 2022, 20(4):374-384. LI ZS, GAO J, CHEN CQ, GUO RT, LIU WD, HAN X. Structure, function and application of hydrolases for polyethylene terephthalate (PET) degradation[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(4):374-384(in Chinese).
    [57] JAEGER KE, RANSAC S, DIJKSTRA BW, COLSON C, van HEUVEL M, MISSET O. Bacterial lipases[J]. FEMS Microbiology Reviews, 1994, 15(1):29-63.
    [58] CHEN S, SU LQ, CHEN J, WU J. Cutinase:characteristics, preparation, and application[J]. Biotechnology Advances, 2013, 31(8):1754-1767.
    [59] HAN X, LIU WD, HUANG JW, MA JT, ZHENG YY, KO TP, XU LM, CHENG YS, CHEN CC, GUO RT. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8:2106.
    [60] JOO S, CHO IJ, SEO H, SON HF, SAGONG HY, SHIN TJ, CHOI SY, LEE SY, KIM KJ. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9:382.
    [61] RAUWERDINK A, KAZLAUSKAS RJ. How the same core catalytic machinery catalyzes 17 different reactions:the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes[J]. ACS Catalysis, 2015, 5(10):6153-6176.
    [62] KAWAI F, KAWABATA T, ODA M. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24):8894-8908.
    [63] CHEN CC, HAN X, KO TP, LIU WD, GUO RT. Structural studies reveal the molecular mechanism of PETase[J]. The FEBS Journal, 2018, 285(20):3717-3723.
    [64] ALVES NM, MANO JF, BALAGUER E, MESEGUER DUEÑAS JM, GÓMEZ RIBELLES JL. Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate):a DSC study[J]. Polymer, 2002, 43(15):4111-4122.
    [65] MARTEN E, MÜLLER RJ, DECKWER WD. Studies on the enzymatic hydrolysis of polyesters. Ⅱ. Aliphatic-aromatic copolyesters[J]. Polymer Degradation and Stability, 2005, 88(3):371-381.
    [66] BIANCHI R, CHIAVACCI P, VOSA R, GUERRA G. Effect of moisture on the crystallization behavior of PET from the quenched amorphous phase[J]. Journal of Applied Polymer Science, 1991, 43(6):1087-1089.
    [67] LANGEVIN D, GRENET J, SAITER JM. Moisture sorption in pet influence on the thermokinetic parameters[J]. European Polymer Journal, 1994, 30(3):339-345.
    [68] WALLACE NE, ADAMS MC, CHAFIN AC, JONES DD, TSUI CL, GRUBER TD. The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis[J]. Environmental Microbiology Reports, 2020, 12(5):578-582.
    [69] SON HF, CHO IJ, JOO S, SEO H, SAGONG HY, CHOI SY, LEE SY, KIM KJ. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019, 9(4):3519-3526.
    [70] BROTT S, PFAFF L, SCHURICHT J, SCHWARZ JN, BÖTTCHER D, BADENHORST CPS, WEI R, BORNSCHEUER UT. Engineering and evaluation of thermostable IsPETase variants for PET degradation[J]. Engineering in Life Sciences, 2021, 22(3-4):192-203.
    [71] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3):1340-1350.
    [72] AUSTIN HP, ALLEN MD, DONOHOE BS, RORRER NA, KEARNS FL, SILVEIRA RL, POLLARD BC, DOMINICK G, DUMAN R, EL OMARI K, MYKHAYLYK V, WAGNER A, MICHENER WE, AMORE A, SKAF MS, CROWLEY MF, THORNE AW, JOHNSON CW, WOODCOCK HL, MCGEEHAN JE, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19):E4350-E4357.
    [73] MENG XX, YANG LX, LIU HQ, LI QB, XU GS, ZHANG Y, GUAN FF, ZHANG YH, ZHANG W, WU NF, TIAN J. Protein engineering of stable IsPETase for PET plastic degradation by Premuse[J]. International Journal of Biological Macromolecules, 2021, 180:667-676.
    [74] ZHONG-JOHNSON EZL, VOIGT CA, SINSKEY AJ. An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films[J]. Scientific Reports, 2021, 11:928.
    [75] TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉ I, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802):216-219.
    [76] ZENG W, LI XQ, YANG YY, MIN J, HUANG JW, LIU WD, NIU D, YANG XC, HAN X, ZHANG LL, DAI LH, CHEN CC, GUO RT. Substrate-binding mode of a thermophilic PET hydrolase and engineering the enzyme to enhance the hydrolytic efficacy[J]. ACS Catalysis, 2022, 12(5):3033-3040.
    [77] REN W, OESER T, SCHMIDT J, RENÉ ME, BARTH M, THEN J, ZIMMERMANN W. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition[J]. Biotechnology and Bioengineering, 2016, 113(8):1658-1665.
    [78] ODA M, YAMAGAMI Y, INABA S, OIDA T, YAMAMOTO M, KITAJIMA S, KAWAI F. Enzymatic hydrolysis of PET:functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity[J]. Applied Microbiology and Biotechnology, 2018, 102(23):10067-10077.
    [79] URBANEK AK, MIROŃCZUK AM, GARCÍA- MARTÍN A, SABORIDO A, DELA MATA I, ARROYO M. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2020, 1868(2):140315.
    [80] LIU P, ZHANG T, ZHENG Y, LI QB, SU TY, QI QS. Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms[J]. Engineering Microbiology, 2021, 1:100003.
    [81] KALATHIL S, MILLER M, REISNER E. Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity[J]. Angewandte Chemie (International Ed in English), 2022, 61(45):e202211057.
    [82] LIU K, XU ZP, ZHAO ZY, CHEN YX, CHAI YT, MA L, LI SY. A dual fluorescence assay enables high-throughput screening for PET hydrolases[J]. ChemSusChem, 2022, e202202019.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵之怡,张国强,刘琨,李盛英. 聚对苯二甲酸乙二醇酯水解酶研究进展[J]. 生物工程学报, 2023, 39(5): 1998-2014

复制
相关视频

分享
文章指标
  • 点击次数:699
  • 下载次数: 1232
  • HTML阅读次数: 1409
  • 引用次数: 0
历史
  • 收稿日期:2022-11-16
  • 在线发布日期: 2023-05-08
  • 出版日期: 2023-05-25
文章二维码
您是第6364869位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司