一株红球菌属细菌LV4在高盐条件下的吡啶降解特性
作者:
基金项目:

山西省基础研究计划青年科学研究项目(202103021223099, 20210302124348);山西浙大新材料与化工研究院基础研究项目(2021SX-AT004);国家自然科学基金面上项目(51778397)


Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由微生物介导的吡啶降解技术是解决高盐吡啶环境污染的经济有效方法之一,开发具有吡啶降解性能且能够耐受高盐分的微生物是该类研究的重要前提。本研究从山西太原钢铁公司焦化废水处理厂活性污泥中分离培养了一株耐盐吡啶降解菌,通过菌落形态和16S rDNA基因系统发育分析,鉴定其为红球菌属(Rhodococcus sp.)的细菌。耐盐性实验结果表明,菌株LV4能够在0%-6%盐度范围内生长,并完全降解初始浓度为500 mg/L的吡啶;但当盐度高于4%时,菌株LV4因其生长变缓而导致吡啶完全降解时间明显延长。扫描电镜结果显示,高盐环境会使菌株LV4的菌体细胞分裂变慢,诱导细胞表面分泌更多的颗粒状胞外聚合物(extracellular polymeric substance, EPS)。当盐度不高于4%时菌株LV4主要依靠EPS中蛋白含量的增加来响应高盐环境的冲击。单因素实验优化发现,菌株LV4在盐度为4%的高盐环境中降解吡啶的最佳条件为温度30 ºC、pH 7.0、转速为120 r/min (DO 10.30 mg/L)。最优条件下菌株LV4对于初始浓度为500 mg/L的吡啶,在经过12 h的适应期后,能以(29.10±0.18) mg/(L·h)的最大速率将吡啶完全降解,总有机碳(total organic carbon, TOC)去除率最高可达88.36%,表明菌株LV4对吡啶的矿化效果较好。利用液质联用仪检测到11种吡啶代谢中间产物,推测菌株LV4主要通过环羟基化和环加氢还原2种代谢路径将吡啶完全降解。菌株LV4在高盐环境对吡啶的快速降解,意味着其在高盐吡啶环境污染治理上具有实际应用的潜力。

    Abstract:

    Biodegradation of pyridine pollutant by microorganisms is one of the economical and effective methods to solve the environmental pollution of pyridine under high salinity conditions. To this end, screening of microorganisms with pyridine degradation capability and high salinity tolerance is an important prerequisite. In this paper, a salt-resistant pyridine degradation bacterium was isolated from the activated sludge of Shanxi coking wastewater treatment plant, and identified as a bacterium belonging to Rhodococcus on the basis of colony morphology and 16S rDNA gene phylogenetic analysis. Salt tolerance experiment showed that strain LV4 could grow and degrade pyridine with the initial concentration of 500 mg/L completely in 0%-6% saline environment. However, when the salinity was higher than 4%, strain LV4 grew slowly and the degradation time of pyridine by strain LV4 was significantly prolonged. Scanning electron microscopy showed that the cell division of strain LV4 became slower, and more granular extracellular polymeric substance (EPS) was induced to secrete in high salinity environment. When the salinity was not higher than 4%, strain LV4 responded to the high salinity environment mainly through increasing the protein content in EPS. The optimum conditions for pyridine degradation by strain LV4 at 4% salinity were 30 ºC, pH 7.0 and 120 r/min (DO 10.30 mg/L). Under these optimal conditions, strain LV4 could completely degrade pyridine with an initial concentration of 500 mg/L at a maximum rate of (29.10±0.18) mg/(L·h) after 12 h adaptation period, and the total organic carbon (TOC) removal efficiency reached 88.36%, indicating that stain LV4 has a good mineralization effect on pyridine. By analyzing the intermediate products in pyridine degradation process, it was speculated that strain LV4 achieved pyridine ring opening and degradation mainly through two metabolic pathways:pyridine-ring hydroxylation and pyridine-ring hydrogenation. The rapid degradation of pyridine by strain LV4 in high salinity environment indicates its application potential in the pollution control of high salinity pyridine environment.

    参考文献
    [1] 何苗, 张晓健, 瞿福平, 顾夏声. 焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性[J]. 中国给水排水, 1997, 13(1):14-17. HE M, ZHANG XJ, QU FP, GU XS. Removal characteristics of aromatic and hetercyclic organic compounds of coke plant wastewater treated by activated sludge process[J]. China Water & Wastewater, 1997, 13(1):14-17(in Chinese).
    [2] LIU SM, WU CH, HUANG HJ. Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions[J]. Chemosphere, 1998, 36(10):2345-2357.
    [3] 何苗, 张晓健, 瞿福平, 顾夏声. 杂环化合物好氧生物降解性能与其化学结构相关性的研究[J]. 中国环境科学, 1997, 17(3):199-202. HE M, ZHANG XJ, QU FP, GU XS. Study on relativity between aerobic biodegradability and chemical structure of heterocyclic compounds[J]. China Environmental Science, 1997, 17(3):199-202(in Chinese).
    [4] WANG J, JIANG XB, LIU XD, SUN XY, HAN WQ, LI JS, WANG LJ, SHEN JY. Microbial degradation mechanism of pyridine by Paracoccus sp. NJUST30 newly isolated from aerobic granules[J]. Chemical Engineering Journal, 2018, 344:86-94.
    [5] 孙磊, 宋彤彤, 王佳硕, 刘存歧. 可降解吡啶的全食副球菌B21-3的筛选鉴定及降解特性[J]. 微生物学通报, 2019, 46(3):461-467. SUN L, SONG TT, WANG JS, LIU CQ. Screening, identification and characterization of a pyridine degrading bacterium Paracoccus pantotrophus B21-3[J]. Microbiology China, 2019, 46(3):461-467(in Chinese).
    [6] LIU YX, ZHANG Q, LV YK, REN RP. Pyridine degradation characteristics of a newly isolated bacterial strain and its application with a novel reactor for the further treatment in pyridine wastewater[J]. Process Biochemistry, 2020, 95:64-70.
    [7] 黄莉婷, 韩昫身, 金艳, 马强, 于建国. 煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究[J]. 化工学报, 2021, 72(9):4881-4891. HUANG LT, HAN XS, JIN Y, MA Q, YU JG. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment[J]. CIESC Journal, 2021, 72(9):4881-4891(in Chinese).
    [8] AHMADI M, JORFI S, KUJLU R, GHAFARI S, DARVISHI CHESHMEH SOLTANI R, JAAFARZADEH HAGHIGHIFARD N. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater[J]. Journal of Environmental Management, 2017, 191:198-208.
    [9] CHEN WW, KONG YC, LI JD, SUN YY, MIN J, HU XK. Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers[J]. International Biodeterioration & Biodegradation, 2020, 154:105047.
    [10] 周旭华, 刘鹏程, 王伟, 丁静, 苏悦. 一株耐盐吡啶降解菌的分离及降解特性研究[J]. 环境污染与防治, 2021, 43(10):1269-1273. ZHOU XH, LIU PC, WANG W, DING J, SU Y. Isolation and degradation characteristics of a halotolerant pyridine degrading bacterial strain[J]. Environmental Pollution & Control, 2021, 43(10):1269-1273(in Chinese).
    [11] ZHU SN, LIU DQ, FAN L, NI JR. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge[J]. Journal of Hazardous Materials, 2008, 160(2/3):289-294.
    [12] YOON JH, KANG SS, CHO YG, LEE ST, KHO YH, KIM CJ, PARK YH. Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(Pt 6):2173-2180.
    [13] 张玉秀, 豆梦楠, 朱康兴, 柴团耀, 张怡鸣, 徐伟超. 喹啉降解菌Rhodococcus sp.的降解特性与生物强化作用[J]. 中国环境科学, 2017, 37(6):2340-2346. ZHANG YX, DOU MN, ZHU KX, CHAI TY, ZHANG YM, XU WC. Bioaugmentation and characteristics of a quinoline-degrading strain Rhodococcus sp.[J]. China Environmental Science, 2017, 37(6):2340-2346(in Chinese).
    [14] ASLAN S, ŞEKERDAĞ N. Salt inhibition on anaerobic treatment of high salinity wastewater by upflow anaerobic sludge blanket (UASB) reactor[J]. Desalination and Water Treatment, 2016, 57(28):12998-13004.
    [15] GUI MY, CHEN Q, NI JR. Effect of NaCl on aerobic denitrification by strain Achromobacter sp. GAD-3[J]. Applied Microbiology and Biotechnology, 2017, 101(12):5139-5147.
    [16] SCHRÖFEL A, KRATOŠOVÁ G, BOHUNICKÁ M, DOBROČKA E, VÁVRA I. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation[J]. Journal of Nanoparticle Research, 2011, 13(8):3207-3216.
    [17] CLOETE TE, OOSTHUIZEN DJ. The role of extracellular exopolymers in the removal of phosphorus from activated sludge[J]. Water Research, 2001, 35(15):3595-3598.
    [18] WANG ZC, GAO MC, SHE ZL, WANG S, JIN CJ, ZHAO YG, YANG SY, GUO L. Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor[J]. Separation and Purification Technology, 2015, 144:223-231.
    [19] YUN H, LIANG B, KONG DY, CHENG HY, LI ZL, GU YB, YIN HQ, WANG AJ. Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants[J]. Journal of Hazardous Materials, 2017, 331:280-288.
    [20] JIANG XB, SHEN JY, XU KC, CHEN D, MU Y, SUN XY, HAN WQ, LI JS, WANG LJ. Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation[J]. Water Research, 2018, 130:291-299.
    [21] WANG PY, CHEN H, WANG Y, LYU YK. Quinoline biodegradation characteristics of a new quinoline-degrading strain, Pseudomonas citronellolis PY1[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(8):2171-2179.
    [22] NIE ZM, YAN BH, XU YH, AWASTHI MK, YANG HJ. Characterization of pyridine biodegradation by two Enterobacter sp. strains immobilized on Solidago canadensis L. stem derived biochar[J]. Journal of Hazardous Materials, 2021, 414:125577.
    [23] REJINIEMON TS, ALODAINI HA RL, HATAMLEH AA, SATHYA R, KUPPUSAMY P, AL-DOSARY MA, KALAIYARASI M. Biodegradation of naphthalene by biocatalysts isolated from the contaminated environment under optimal conditions[J]. Chemosphere, 2022, 305:135274.
    [24] TAYLOR SM, HE YL, ZHAO B, HUANG J. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL[J]. Journal of Environmental Sciences, 2009, 21(10):1336-1341.
    [25] GUPTA N, O'LOUGHLIN EJ, SIMS GK. Microbial degradation of pyridine and pyridine derivatives[A]//Microorganisms for Sustainability[M]. Singapore:Springer Singapore, 2019:1-31.
    [26] ZEFIROV NS, AGAPOVA SR, TERENTIEV PB, BULAKHOVA IM, VASYUKOVA NI, Modyanova LV. Degradation of pyridine by Arthrobacter crystallopoietes and Rhodococcus opocus strains[J]. FEMS Microbiology Letters, 1994, 118(1/2):71-74.
    [27] HU CG, ZHAO SX, GUO LZ, YU H, CHEN X. Microbial degradation of pyridine by co-culture of two newly isolated strains, Arthrobacter sp. strain PDC-1 and Rhodococcus sp. strain HPD-2[J]. Research Square, 2020. https://doi.org/10.21203/rs.3.rs-64856/v1.
    [28] LIU XT, ZHAO Q, REN J, DONG WY, WU QQ, ZHU DM. N-terminal truncation of a maleate cis-trans isomerase from Rhodococcus jostii RHA1 results in a highly active enzyme for the biocatalytic production of fumaric acid[J]. Journal of Molecular Catalysis B:Enzymatic, 2013, 93:44-50.
    [29] ZHANG YX, ZHANG YM, XIONG J, ZHAO ZH, CHAI TY. The enhancement of pyridine degradation by Rhodococcus KDPy1 in coking wastewater[J]. FEMS Microbiology Letters, 2019, 366(1):fny271.
    [30] VYRIDES I, STUCKEY DC. Adaptation of anaerobic biomass to saline conditions:role of compatible solutes and extracellular polysaccharides[J]. Enzyme and Microbial Technology, 2009, 44(1):46-51.
    [31] ZHOU GZ, WANG XT, ZHAO HY, ZHANG WQ, LIU GS, ZHANG XG. Isolation of two salt-tolerant strains from activated sludge and its COD degradation characteristics from saline organic wastewater[J]. Scientific Reports, 2020, 10:18421.
    [32] 熊富忠, 赵小希, 温东辉, 李琪琳. 一株吡啶降解菌Pseudomonas sp. ZX08的生物膜形成特性及影响因素[J]. 微生物学通报, 2020, 47(5):1342-1353. XIONG FZ, ZHAO XX, WEN DH, LI QL. Characteristics and influencing factors of biofilm formation by a pyridine-degrading bacterium Pseudomonas sp. ZX08[J]. Microbiology China, 2020, 47(5):1342-1353(in Chinese).
    [33] ČASAITĖ V, STANISLAUSKIENĖ R, VAITEKŪNAS J, TAURAITĖ D, RUTKIENĖ R, GASPARAVIČIŪTĖ R, MEŠKYS R. Microbial degradation of pyridine:acomplete pathway in Arthrobacter sp. strain 68b deciphered[J]. Applied and Environmental Microbiology, 2020, 86(15):e00902-e00920.
    [34] YU H, TANG HZ, ZHU XY, LI YY, XU P. Molecular mechanism of nicotine degradation by a newly isolated strain, Ochrobactrum sp. strain SJY1[J]. Applied and Environmental Microbiology, 2015, 81(1):272-281.
    [35] BRANDSCH R. Microbiology and biochemistry of nicotine degradation[J]. Applied Microbiology and Biotechnology, 2006, 69(5):493-498.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王莹,陈虎,徐梦迪,吕永康. 一株红球菌属细菌LV4在高盐条件下的吡啶降解特性[J]. 生物工程学报, 2023, 39(3): 1202-1216

复制
分享
文章指标
  • 点击次数:293
  • 下载次数: 946
  • HTML阅读次数: 1164
  • 引用次数: 0
历史
  • 收稿日期:2022-10-12
  • 录用日期:2022-11-18
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第5993489位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司