Abstract:This study aims to develop a method to detect bovine multi-cytokines based on flow cytometry. Previously we have prepared and screened monoclonal antibodies against bovine cytokines IFN-γ, IL-2, TNF-α, IP-10 and MCP-1. These bovine cytokine monoclonal antibodies were fluorescently labeled, and the combination of antibody and cell surface molecules were used to develop the method for detecting bovine multi-cytokines. Subsequently, the developed method was used to determine the cytokine expression profile of Mycobacterium bovis BCG infected bovine peripheral blood mononuclear cells in vitro, and evaluate the cytokine expression level of peripheral blood CD4+T cells of tuberculosis-positive cattle. The bovine multi-cytokine flow cytometry detection method can effectively determine the cytokine expression of BCG-infected bovine peripheral blood T lymphocytes. Among them, the expression levels of IFN-γ, IL-2, and TNF-α continue to increase after 40 hours of infection, while the expression levels of IP-10 and MCP-1 decreased. The combined detection of IFN-γ, IL-2, and TNF-α on CD4+ T lymphocytes in peripheral blood of cattle can effectively distinguish tuberculosis-positive and tuberculosis-negative samples. This method may facilitate evaluating the level of cellular immune response after bovine pathogen infection and vaccine injection.