用于红霉素生产的500m3生物反应器的理性设计
作者:
基金项目:

国家重点研发计划(2021YFC2101100)


Rational design of a 500 m3 fermenter for erythromycin production by Saccharopolyspora erythraea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [10]
  • | | |
  • 文章评论
    摘要:

    红霉素(erythromycin)是由绛红色糖多胞菌(Saccharopolyspora erythraea)发酵生产的次级代谢产物,其生产水平不仅受发酵工艺的影响,也受反应器结构影响。为解决红霉素发酵过程放大问题,本研究采用时间常数法和计算流体力学(computational fluid dynamics,CFD)数值模拟验证相结合的方法设计了500m3超大规模红霉素耗氧发酵生物反应器。首先,通过对50L反应器红霉素发酵过程研究,发现溶氧是关键性限制因素,通过氧消耗速率(oxygen uptake rate,OUR)等参数分析计算得到设备的氧供应时间常数tmt需小于6.25s。然后,基于时间常数法和经验关联式理性设计500m3反应器搅拌桨叶组合方式,即底层BDT8桨叶+两层MSX4桨叶的搅拌桨组合,并通过经验公式及CFD方法对设计结果进行了模拟验证。两种验证方法结果均表明500m³反应器采取底层BDT8桨叶+两层MSX4桨叶的组合方式时设备的氧供应时间常数小于6.25s,且反应器内流场特性(如持气率、剪切率和速度矢量等)均能满足红霉素大规模发酵的需要。经实际发酵验证,设计的生物反应器能够满足红霉素的工业规模发酵应用。

    Abstract:

    Erythromycin is a macrolide antibiotic produced by Saccharopolyspora erythraea. Its yield is greatly affected by the fermentation conditions and the bioreactor configurations. In this study, a novel scale-up method for erythromycin fermentation was developed based on computational fluid dynamics (CFD) and time constant analysis. Firstly, the dissolved oxygen (DO) was determined as a key parameter according to the physiological properties of S.erythraea cultivated in a 50 L bioreactor. It was found that the time constant of oxygen supply (tmt) in a 500 m3 bioreactor should be less than 6.25 s in order to satisfy the organism's oxygen uptake rate (OUR). Subsequently, a 500 m3 bioreactor was designed using the time constant method combined with empirical correlations. The impeller combination with one BDT8 impeller at bottom and two MSX4 impellers at upper part was determined, and then validated by numerical simulation. The results indicated that the tmt of the bioreactor (<6.25 s) and the fluid properties, including gas hold-up, shear stress and fluid vector, met the requirements of erythromycin fermentation. Finally, the industrial production of erythromycin in the 500 m3 showed the design method was applicable in large scale fermentation.

    参考文献
    [1] Lara AR, Galindo E, Ramírez OT, et al. Living with heterogeneities in bioreactors:understanding the effects of environmental gradients on cells. Mol Biotechnol, 2006, 34(3):355-382.
    [2] 范代娣, 陈斌, 尚龙安, 等. 红霉素发酵工艺优化研究. 生物工程学报, 1999, 15(1):104-108. Fan DD, Chen B, Shang LA, et al. The improvement of fermentation technical parameters for the eryhrusmycin formation. Chin J Biotech, 1999, 15(1):104-108(in Chinese).
    [3] 戚以政, 汪叔雄. 生物反应动力学与反应器. 3版. 北京:化学工业出版社, 2007:292. Qi YZ, Wang SX. Biological reaction kinetics and reactors. 3rd Ed. Beijing:Chemical Industry Press, 2007:292. (in Chinese).
    [4] 谢明辉. 多层搅拌式生物反应器内溶液流变性质对流场特性影响的研究[D]. 上海:华东理工大学, 2013. Xie MH. Study of the effect of the rheology properties on flow fields in stirred bioreactors with multiple impellers[D]. Shanghai:East China University of Science and Technology, 2013(in Chinses).
    [5] Fujasová M, Linek V, Moucha T. Mass transfer correlations for multiple-impeller gas-liquid contactors. Analysis of the effect of axial dispersion in gas and liquid phases on "local" kLa values measured by the dynamic pressure method in individual stages of the vessel. Chem Eng Sci, 2007, 62(6):1650-1669.
    [6] 环境保护部环境工程评估中心. 环境影响评价技术导则与标准. 北京:中国环境科学出版社, 2016:96-97. Environmental engineering assessment center of the Ministry of ecology and environment. Technical Guidelines for Environmental Impact Assessment. Beijing:China Environmental Science Press, 2016:96-97(in Chinese).
    [7] Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes:an overview. Biotechnol Adv, 2009, 27(2):153-176.
    [8] 张庆华, 毛在砂, 杨超, 等. 搅拌反应器中液相混合时间研究进展. 化工进展, 2008, 27(10):1544-1550. Zhang QH, Mao ZS, Yang C, et al. Research progress of liquid-phase mixing time in stirred tanks. Chem Ind Eng Prog, 2008, 27(10):1544-1550(in Chinese).
    [9] 程荡, 程景才, 雍玉梅, 等. 多相搅拌槽内宏观混合研究进展. 化学工程, 2011, 39(6):59-64. Cheng D, Cheng JC, Yong YM, et al. Research progress of macromixing in multiphase stirred vessels. Chem Eng China, 2011, 39(6):59-64(in Chinese).
    [10] Pan A, Xie MH, Li C, et al. CFD simulation of average and local gas-liquid flow properties in stirred tank reactors with multiple rushton impellers. J Chem Eng Japan/JCEJ, 2017, 50(12):878-891.
    [11] Li C, Tian JT, Wang WF, et al. Numerical and experimental assessment of a miniature bioreactor equipped with a mechanical agitator and non-invasive biosensors. J Chem Technol Biotechnol, 2019, 94(8):2671-2683.
    [12] 庄英萍, 储炬, 张嗣良, 等. 红霉素发酵过程前期参数相关分析及调控. 华东理工大学学报, 2004, 30(6):636-639. Zhuang YP, Chu J, Zhang SL, et al. Parameter correlation analysis and optimization of process in the early period of erythromycin fermentation. J East China Univ Sci Technol, 2004, 30(6):636-639(in Chinese).
    [13] 李军庆, 蔡子金, 张庆文, 等. CFD技术用于红霉素发酵罐搅拌系统的设计. 南京工业大学学报(自然科学版), 2014, 36(2):123-128. Li JQ, Cai ZJ, Zhang QW, et al. Stirred system design for erythromycin fermentor by CFD. J Nanjing Univ Technol (Nat Sci Ed), 2014, 36(2):123-128(in Chinese).
    [14] 邹祥. 基于氮调控的红霉素发酵过程优化与放大规律研究[D]. 上海:华东理工大学, 2009. Zou X. Process optimization and scale-up of erythromycin production by Saccharopolyspora erythraea based on nitrogen regulation[D]. Shanghai:East China University of Science and Technology, 2009(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭鑫,李超,郭美锦. 用于红霉素生产的500m3生物反应器的理性设计[J]. 生物工程学报, 2022, 38(12): 4692-4704

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-13
  • 最后修改日期:2022-06-15
  • 在线发布日期: 2022-12-27
  • 出版日期: 2022-12-25
文章二维码
您是第5995788位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司