Abstract:Terpene synthase (TPS) plays important roles in the synthesis of terpenoids which are the main fragrances in Rhododendron flowers. To understand the function of TPS genes in terpenoid metabolism in relation to flower aroma formation, we identified all TPS gene family members in Rhododendron by analyzing its genome database. We then used a transcriptomic approach to analyze the differential gene expression patterns of TPS gene family members in the scented flower Rhododendron fortunei compared to the non-scented flower Rhododendron ‘Nova Zembla’. The contents of terpenoid compounds in petals of the above two Rhododendron species at different developmental stages were also measured by using qRT-PCR and head space-solid phase micro-extraction combined with gas chromatography-mass spectrometry. Our results showed that a total of 47 RsTPS members, with individual lengths ranged from 591 to 2 634 bp, were identified in the Rhododendron genome. The number of exons in RsTPS gene ranged from 3 to 12, while the length of each protein encoded ranged from 196 to 877 amino acids. Members of the RsTPS family are mainly distributed in the chloroplast and cytoplasm. Phylogenetic analysis showed that RsTPS genes can be clustered into 5 subgroups. Seven gene family members can be functionally annotated as TPS gene family since they were temporally and spatially expressed as shown in the transcriptome data. Notably, TPS1, TPS10, TPS12 and TPS13 in Rhododendron fortunei were expressed highly in flower buds reached the peak in the full blossoming. Correlation analysis between gene expression levels and terpenoid content indicates that the expression levels of TPS1, TPS4, TPS9, TPS10, TPS12 and TPS13 were positively correlated with the content of terpenoids in the petals of R. fortunei at all flower developmental stages, suggesting that these six genes might be involved in the aroma formation in R. fortunei.