杜鹃花TPS基因家族鉴定及与萜类物质代谢的关系分析
作者:
基金项目:

宁波市科技创新2025现代种业重大专项项目(2021Z005);浙江省重点研发计划(2021C02053);浙江省“生物工程”一流学科学生创新项目(CX2021047)


Identification of terpene synthase gene family members in Rhododendron and its relationship with terpenoid metabolism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    萜烯合成酶(terpene synthase,TPS)能催化不同的前体物质生成不同的萜类化合物,是合成萜类物质的关键酶。为探究杜鹃花TPS基因家族成员在萜类物质代谢过程中的表达模式,本文基于杜鹃花基因组数据库,利用生物信息学方法对杜鹃花TPS基因(TPS)进行家族成员鉴定;通过云锦杜鹃和诺娃杜鹃两种不同种高山杜鹃的转录组测序结果,结合qRT-PCR、顶空固相微萃取和气相色谱-质谱联用技术,分析两种杜鹃不同发育时期花瓣中TPS家族成员表达水平和代谢物含量变化关系。结果表明,从杜鹃花基因组数据库中共鉴定获得47个RsTPS成员,RsTPS家族成员长度在591-2 634 bp之间,含有3-12个外显子不等,编码196-877个氨基酸;RsTPS家族成员主要分布在叶绿体和细胞质;系统进化分析结果显示RsTPS基因分为5个亚组。通过分析转录组数据得到7个功能注释为TPS的基因家族成员,发现TPS1TPS10TPS12TPS13的表达量在4个时期中呈现出先上升,到盛开期达到顶峰后再下降的趋势。对基因表达量变化与萜类物质含量变化进行相关性分析,发现TPS1TPS4TPS9TPS10TPS12TPS13表达量与云锦杜鹃不同时期花瓣中萜类物质含量变化呈显著性正相关,推测这6个基因家族成员可能是参与云锦杜鹃花香调控的关键基因。

    Abstract:

    Terpene synthase (TPS) plays important roles in the synthesis of terpenoids which are the main fragrances in Rhododendron flowers. To understand the function of TPS genes in terpenoid metabolism in relation to flower aroma formation, we identified all TPS gene family members in Rhododendron by analyzing its genome database. We then used a transcriptomic approach to analyze the differential gene expression patterns of TPS gene family members in the scented flower Rhododendron fortunei compared to the non-scented flower Rhododendron ‘Nova Zembla’. The contents of terpenoid compounds in petals of the above two Rhododendron species at different developmental stages were also measured by using qRT-PCR and head space-solid phase micro-extraction combined with gas chromatography-mass spectrometry. Our results showed that a total of 47 RsTPS members, with individual lengths ranged from 591 to 2 634 bp, were identified in the Rhododendron genome. The number of exons in RsTPS gene ranged from 3 to 12, while the length of each protein encoded ranged from 196 to 877 amino acids. Members of the RsTPS family are mainly distributed in the chloroplast and cytoplasm. Phylogenetic analysis showed that RsTPS genes can be clustered into 5 subgroups. Seven gene family members can be functionally annotated as TPS gene family since they were temporally and spatially expressed as shown in the transcriptome data. Notably, TPS1, TPS10, TPS12 and TPS13 in Rhododendron fortunei were expressed highly in flower buds reached the peak in the full blossoming. Correlation analysis between gene expression levels and terpenoid content indicates that the expression levels of TPS1, TPS4, TPS9, TPS10, TPS12 and TPS13 were positively correlated with the content of terpenoids in the petals of R. fortunei at all flower developmental stages, suggesting that these six genes might be involved in the aroma formation in R. fortunei.

    参考文献
    [1] Liu N, Zhang L, Zhou YL, et al. The Rhododendron plant genome database (RPGD):a comprehensive online omics database for Rhododendron. BMC Genomics, 2021, 22(1):376.
    [2] Liu JY, Guo PJ, Wang XL, et al. Study on phytochemical and pharmacological activities of four Rhododendron plants endemic to northeast China. J Agric Food Res, 2022, 7:100255.
    [3] 吕思佳, 吴月燕, 贾永红, 等. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析. 生物工程学报, 2022, 38(1):374-385. Lü SJ, Wu YY, Jia YH, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from Rhododendron fortunei. Chin J Biotech, 2022, 38(1):374-385(in Chinese).
    [4] 金则新, 李钧敏, 顾奇萍. 云锦杜鹃自然居群遗传多样性的ISSR分析. 园艺学报, 2006, 33(6):1263-1267. Jin ZX, Li JM, Gu QP. Genetic diversity in the natural populations of Rhododendron fortunei revealed by ISSR molecular markers. Acta Hortic Sin, 2006, 33(6):1263-1267(in Chinese).
    [5] 袁丛军, 陈光丽, 戴晓勇, 等. 雷公山保护区云锦杜鹃群落结构及其多样性特征. 贵州农业科学, 2021, 49(11):125-133. Yuan CJ, Chen GL, Dai XY, et al. Structure and diversity characteristics of Rhododendron fortunei community in Leigong Mountain nature reserve. Guizhou Agric Sci, 2021, 49(11):125-133(in Chinese).
    [6] 张春英, 侯奕敏, 戴思兰. 云锦杜鹃菌根显微结构观察. 园艺学报, 2008, 35(11):1641-1646. Zhang CY, Hou YM, Dai SL. Observation on microstructure of mycorrhizal root of Rhododendron fortunei L.. Acta Hortic Sin, 2008, 35(11):1641-1646(in Chinese).
    [7] 王文静, 吕思佳, 何凡, 等. 云锦杜鹃RhLIS基因的克隆与表达分析. 核农学报, 2021, 35(12):2724-2732. Wang WJ, Lyu SJ, He F, et al. Cloning and expression analysis of linalool synthetase gene in Rhododendron fortunei. J Nucl Agric Sci, 2021, 35(12):2724-2732(in Chinese).
    [8] Koeduka T. Functional evolution of biosynthetic enzymes that produce plant volatiles. Biosci Biotechnol Biochem, 2018, 82(2):192-199.
    [9] Dudareva N, Klempien A, Muhlemann JK, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol, 2013, 198(1):16-32.
    [10] Muhlemann JK, Klempien A, Dudareva N. Floral volatiles:from biosynthesis to function. Plant Cell Environ, 2014, 37(8):1936-1949.
    [11] Tholl D. Biosynthesis and biological functions of terpenoids in plants. Biotechnology of Isoprenoids. Cham:Springer International Publishing, 2015:63-106.
    [12] Chen ZQ, Vining KJ, Qi XW, et al. Genome-wide analysis of terpene synthase gene family in Mentha longifolia and catalytic activity analysis of a single terpene synthase. Genes, 2021, 12(4):518.
    [13] 章辰飞, 谢晓鸿, 汪庆昊, 等. 云锦杜鹃不同花期挥发性成分的HS-SPME-GC-MS检测与主成分分析. 广西植物, 2020, 40(7):1033-1045. Zhang CF, Xie XH, Wang QH, et al. Analysis of volatile components of Rhododendron fortunei at different flowering stages by HS-SPME-GC-MS and PCA. Guihaia, 2020, 40(7):1033-1045(in Chinese).
    [14] Newman JD, Chappell J. Isoprenoid biosynthesis in plants:carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol, 1999, 34(2):95-106.
    [15] Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants:a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J, 2011, 66(1):212-229.
    [16] Jiang SY, Jin JJ, Sarojam R, et al. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol Evol, 2019, 11(8):2078-2098.
    [17] Matarese F, Scalabrelli G, Onofrio CD. Analysis of the expression of terpene synthase genes in relation to aroma content in two aromatic Vitis vinifera varieties. Funct Plant Biol, 2013, 40(6):552-565.
    [18] 姚晨阳, 葛红, 吴华, 等. 玫瑰不同品种花瓣挥发性成分分析. 园艺学报, 2019, 46(2):375-384. Yao CY, Ge H, Wu H, et al. Petal volatile components among different varieties of Rosa rugosa. Acta Hortic Sin, 2019, 46(2):375-384(in Chinese).
    [19] Karunanithi PS, Zerbe P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front Plant Sci, 2019, 10:1166.
    [20] Zeng XL, Liu C, Zheng RR, et al. Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Osmanthus fragrans lour. Front Plant Sci, 2016, 6:1232.
    [21] Coppola M, Cascone P, Bossi S, et al. TPS genes silencing alters constitutive indirect and direct defense in tomato. Int J Mol Sci, 2018, 19(9):2748.
    [22] Yu ZM, Zhao CH, Zhang GH, et al. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis. Int J Mol Sci, 2020, 21(15):5419.
    [23] 刘偲, 席婉, 袁金梅, 等. 桂花‘莲籽丹桂’芳樟醇合酶基因OfTPS5的克隆及功能鉴定. 园艺学报, 2020, 47(2):310-320. Liu C, Xi W, Yuan JM, et al. Molecular cloning and functional characterization of linalool synthase gene OfTPS5 in Osmanthus fragrans ‘Lianzi dangui’ flowers. Acta Hortic Sin, 2020, 47(2):310-320(in Chinese).
    [24] Huang H, Kuo YW, Chuang YC, et al. Terpene synthase-b and terpene synthase-e/f genes produce monoterpenes for Phalaenopsis bellina floral scent. Front Plant Sci, 2021, 12:700958.
    [25] Huang XZ, Xiao YT, Köllner TG, et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell Environ, 2018, 41(1):261-274.
    [26] Li RS, Zhu JH, Guo D, et al. Genome-wide identification and expression analysis of terpene synthase gene family in Aquilaria sinensis. Plant Physiol Biochem, 2021, 164:185-194.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨国霞,蒋宝鑫,何凡,吕思佳,李东宾,贾永红,朱平,谢晓鸿,吴月燕. 杜鹃花TPS基因家族鉴定及与萜类物质代谢的关系分析[J]. 生物工程学报, 2022, 38(10): 3740-3756

复制
分享
文章指标
  • 点击次数:601
  • 下载次数: 1547
  • HTML阅读次数: 1302
  • 引用次数: 0
历史
  • 收稿日期:2022-03-23
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第6406968位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司