SARS-CoV-2中和纳米抗体在里氏木霉中的重组表达
作者:
基金项目:

国家重点研发计划(2018YFA0900500);国家自然科学基金(32170037);山东大学2020年教育教学改革研究一般项目(2020Y083);山东大学青年学者未来计划项目(YSPSDU)


Expression of a SARS-CoV-2 neutralizing nanobody in Trichoderma reesei
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于骆驼科动物单链抗体VHH结构域的纳米抗体具有分子量小、结构简单、溶解性好、稳定性强等多种优势,可通过吸入给药,在呼吸道病毒的防控中具有重要应用价值。里氏木霉是食品级的蛋白质生产宿主,其纤维素酶分泌量可达到80 g/L以上,有望用于药物蛋白的低成本生产。文中在密码子优化的基础上,使用组成型强启动子Pcdna1,实现了SARS-CoV-2中和纳米抗体Nb20在里氏木霉中的重组表达。将Nb20与里氏木霉纤维二糖水解酶CBHⅠ的N端片段融合表达,并在二者间引入胞内KEX2蛋白酶切位点,于葡萄糖培养基中摇瓶发酵48 h可生产出浓度为47.4 mg/L的Nb20蛋白。重组表达的纳米抗体能够与SARS-CoV-2刺突蛋白的受体结合区相结合,有望用于新型冠状病毒的中和。以上结果显示,里氏木霉在纳米抗体的重组表达中具有一定的应用潜力。

    Abstract:

    Nanobodies derived from camelid single-chain antibodies have the advantages of being small, simple, highly soluble and stable. Nanobodies can be administered by inhalation and therefore is potentially valuable for the prevention and control of respiratory viruses. Trichoderma reesei is a food-grade protein expression host with a cellulase production capacity of up to 80 g/L, which can be employed for low-cost production of therapeutic proteins. In this study, a codon-optimized SARS-CoV-2 neutralizing nanobody Nb20 was expressed in T. reesei under a strong constitutive promoter Pcdna1. Nb20 protein was fused downstream of the N-terminal fragment of cellobiohydrolase Ⅰ, and the fusion protein can be intracellularly cleaved by the KEX2 protease to release Nb20. In a shake-flask fermentation using glucose medium, 47.4 mg/L Nb20 was detected in the culture after 48 h of cultivation. The expressed Nb20 showed the ability to interact with the receptor-binding domain of SARS-CoV-2 spike protein, suggesting that it can be used for the neutralization of SARS-CoV-2. The results indicate that T. reesei has the potential for recombinant production of nanobodies.

    参考文献
    [1] Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell, 2020, 182(1):73-84.e16.
    [2] Du Y, Shi R, Zhang Y, et al. A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nat Commun, 2021, 12(1):5000.
    [3] Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature, 1993, 363(6428):446-448.
    [4] 姜忍忍, 许超, 周小理, 等. 纳米抗体的应用及其研究新进展. 生命的化学, 2013, 33(3):307-315. Jiang RR, Xu C, Zhou XL, et al. Application and the research progress of nanobodies. Chem Life, 2013, 33(3):307-315(in Chinese).
    [5] Van Bockstaele F, Holz JB, Revets H. The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs, 2009, 10(11):1212-1224.
    [6] Valdez-Cruz NA, García-Hernández E, Espitia C, et al. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact, 2021, 20(1):88.
    [7] Gai J, Ma L, Li G, et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. Med Comm (Beijing), 2021, 2(1):101-113.
    [8] Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol, 2018, 102(2):539-551.
    [9] Hisada H, Tsutsumi H, Ishida H, et al. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Appl Microbiol Biotechnol, 2013, 97(2):761-766.
    [10] Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond:the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact, 2016, 15(1):106.
    [11] Fonseca LM, Parreiras LS, Murakami MT. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Biotechnol Biofuels, 2020, 13:93.
    [12] Nyyssönen E, Penttilä M, Harkki A, et al. Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Biotechnology (N Y), 1993, 11(5):591-595.
    [13] Landowski CP, Mustalahti E, Wahl R, et al. Enabling low cost biopharmaceuticals:high level interferon alpha-2b production in Trichoderma reesei. Microb Cell Fact, 2016, 15(1):104.
    [14] Xiang Y, Nambulli S, Xiao Z, et al. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science, 2020, 370(6523):1479-1484.
    [15] Waghmare PR, Waghmare PP, Gao L, et al. Efficient constitutive expression of cellulolytic enzymes in Penicillium oxalicum for improved efficiency of lignocellulose degradation. J Microbiol Biotechnol, 2021, 31(5):740-746.
    [16] Grote A, Hiller K, Scheer M, et al. JCat:a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res, 2005, 33(web server issue):W526-W531.
    [17] Penttilä M, Nevalainen H, Rättö M, et al. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 1987, 61(2):155-164.
    [18] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ:25 years of image analysis. Nat Methods, 2012, 9(7):671-675.
    [19] Nakari-Setälä T, Penttilä M. Production of Trichoderma reesei cellulases on glucose-containing media. Appl Environ Microbiol, 1995, 61(10):3650-3655.
    [20] Dick LW, Kim C, Qiu D, et al. Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides. Biotechnol Bioeng, 2007, 97(3):544-553.
    [21] Ye G, Gallant J, Zheng J, et al. The development of nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates. eLife, 2021, 10:e64815.
    [22] Kang G, Hu M, Ren H, et al. VHH212 nanobody targeting the hypoxia-inducible factor 1α suppresses angiogenesis and potentiates gemcitabine therapy in pancreatic cancer in vivo. Cancer Biol Med, 2021, 18(3):772-787.
    [23] Su X, Schmitz G, Zhang M, et al. Heterologous gene expression in filamentous fungi. Adv Appl Microbiol, 2012, 81:1-61.
    [24] Gouka RJ, Punt PJ, Van den Hondel CAMJJ. Efficient production of secreted proteins by Aspergillus :progress, limitations and prospects. Appl Microbiol Biotechnol, 1997, 47(1):1-11.
    [25] De Meyer T, Laukens B, Nolf J, et al. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnol J, 2015, 13(7):938-947.
    [26] Okazaki F, Aoki JI, Tabuchi S, et al. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol, 2012, 96(1):81-88.
    [27] Rantasalo A, Vitikainen M, Paasikallio T, et al. Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep, 2019, 9(1):5032.
    [28] Landowski CP, Huuskonen A, Wahl R, et al. Enabling low cost biopharmaceuticals:a systematic approach to delete proteases from a well-known protein production host Trichoderma reesei. PLoS One, 2015, 10(8):e0134723.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张建慧,李佳骏,高丽伟,Pankajkumar Ramdas Waghmare,曲径遥,刘国栋. SARS-CoV-2中和纳米抗体在里氏木霉中的重组表达[J]. 生物工程学报, 2022, 38(6): 2250-2258

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 1066
  • HTML阅读次数: 815
  • 引用次数: 0
历史
  • 收稿日期:2021-09-06
  • 在线发布日期: 2022-06-28
  • 出版日期: 2022-06-25
文章二维码
您是第5808972位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司