谷子光敏色素基因光周期、非生物胁迫响应特性及关键自然变异位点鉴定
作者:
基金项目:

国家自然科学基金(31471569)


The responsive characteristics of phytochrome genes to photoperiod, abiotic stresses and identification of their key natural variation sites in foxtail millet (Setaria italica L.)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    比较分析光敏色素基因家族成员对光周期、非生物胁迫响应模式并鉴定其有利自然变异类型,为全面了解光敏色素基因家族在光周期调控谷子生长发育及应对非生物胁迫中的作用机制、开展关键性状的分子辅助选择奠定基础。文中利用RT-PCR技术从超晚熟谷子农家种‘毛粟’中克隆了3个光敏色素基因SiPHYASiPHYBSiPHYC;在进行生物信息学分析后,利用荧光定量PCR技术研究了3个基因的光周期调控模式及对聚乙二醇(polyethylene glycol,PEG)模拟干旱、自然干旱、脱落酸(abscisic acid,ABA)、高温、NaCl五种非生物胁迫的响应特性;最后检测这3个基因在160份谷子材料的突变位点,通过单倍型分析确定基因的功能效应。结果表明,获得了基因SiPHYASiPHYBSiPHYC包含完整编码区的cDNA序列,长度分别为3 981、3 953、3 764 bp,其中基因SiPHYBSiPHYC具有较近的进化关系。基因SiPHYASiPHYBSiPHYC均受光周期调控,但光周期对SiPHYBSiPHYC昼夜表达模式的影响要强于SiPHYA;短日照条件临近抽穗SiPHYASiPHYB表达水平显著低于长日照,暗示其在谷子长日照抑制抽穗中发挥作用。SiPHYBSiPHYC共同响应PEG模拟干旱、自然干旱、ABA、高温4种胁迫;SiPHYASiPHYB以不同方式响应盐胁迫,SiPHYC没有参与谷子盐胁迫响应过程。基于160份谷子材料重测序数据发现基因SiPHYB高度保守,基因SiPHYA含有两个错义突变:单核苷酸多态性(single nucleotide polymorphism,SNP)7 034 522C→T,SNP7 036 657G→C,导致延迟抽穗、增加株高。基因SiPHYC含有一个错义突变(SNP5 414 823G→T),导致短日照缩短抽穗期,长日照延长抽穗期,对株高、穗长的增加作用不受光温环境影响。光周期对基因SiPHYASiPHYBSiPHYC具有不同的调控作用,除了盐胁迫,SiPHYBSiPHYC共同响应多种非生物胁迫,相比参考基因型,SiPHYASiPHYC突变延迟抽穗、增加株高和穗长。

    Abstract:

    The responsive patterns of phytochrome gene family members to photoperiod and abiotic stresses were comparatively analyzed and the favorable natural variation sites of these genes were identified. This would help understand the mechanism of phytochrome gene family in photoperiod-regulated growth and development and abiotic stress response. In addition, it may facilitate the molecular marker assisted selection of key traits in foxtail millet. In this study, we used RT-PCR to clone three phytochrome genes SiPHYA, SiPHYB and SiPHYC from ultra-late maturity millet landrace variety ‘Maosu’. After primary bioinformatics analysis, we studied the photoperiod control mode and the characteristics of these genes in responding to five abiotic stresses including polyethylene glycol (PEG)-simulated drought, natural drought, abscisic acid (ABA), high temperature and NaCl by fluorescence quantitative PCR. Finally, we detected the mutation sites of the three genes among 160 foxtail millet materials and performed haplotype analysis to determine the genes' functional effect. We found that the cloned cDNA sequences of gene SiPHYA, SiPHYB and SiPHYC were 3 981, 3 953 and 3 764 bp respectively, which contained complete coding regions. Gene SiPHYB and SiPHYC showed closer evolutionary relationship. Photoperiod regulated all of the three genes, but showed more profound effects on diurnal expression pattern of SiPHYB, SiPHYC than that of SiPHYA. Under short-day, when near heading, the expression levels of SiPHYA and SiPHYB were significantly lower than that under long-day, indicating their roles in suppressing heading of foxtail millet under long-day. SiPHYB and SiPHYC were responsive to PEG-simulated drought, natural drought, ABA and high temperature stresses together. SiPHYA and SiPHYB responded differently to salt stress, whereas SiPHYC did not respond to salt stress. Re-sequencing of 160 foxtail millet materials revealed that SiPHYB was highly conservative. Two missense mutations of SiPHYA, such as single nucleotide polymorphism (SNP) 7 034 522C→T and SNP7 036 657G→C, led to delaying heading and increasing plant height. One missense mutation of SiPHYC, such as SNP5 414 823G→T, led to shortening heading under short-day and delaying heading under long-day, as well as increasing plant height and panicle length regardless of photo-thermal conditions. Photoperiod showed different regulatory effects on SiPHYA, SiPHYB and SiPHYC. SiPHYB and SiPHYC jointly responded to various abiotic stresses except for the salt stress. Compared with the reference genotype, mutation genotypes of SiPHYA and SiPHYC delayed heading and increased plant height and panicle length.

    参考文献
    [1] Rockwell NC, Su YS, Lagarias JC. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 2006, 57:837-858.
    [2] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59:281-311.
    [3] Kami C, Lorrain S, Hornitschek P, et al. Light-regulated plant growth and development. Curr Top Dev Biol, 2010, 91:29-66.
    [4] De Wit M, Galvão VC, Fankhauser C. Light-mediated hormonal regulation of plant growth and development. Annu Rev Plant Biol, 2016, 67:513-537.
    [5] 马朝峰, 戴思兰. 光受体介导信号转导调控植物开花研究进展. 植物学报, 2019, 54(1):9-22. Ma CF, Dai SL. Advances in photoreceptor-mediated signaling transduction in flowering time regulation. Chin Bull Bot, 2019, 54(1):9-22(in Chinese).
    [6] Franklin KA, Toledo-Ortiz G, Pyott DE, et al. Interaction of light and temperature signalling. J Exp Bot, 2014, 65(11):2859-2871.
    [7] Foreman J, Johansson H, Hornitschek P, et al. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J, 2011, 65(3):441-452.
    [8] Shamim Z, Rashid B, ur Rahman S, et al. Expression of drought tolerance in transgenic cotton. Sci Asia, 2013, 39(1):1.
    [9] Junior CAS, D'amico-Damião V, Carvalho RF. Phytochrome type B family:the abiotic stress responses signaller in plants. Ann Appl Biol, 2021, 178(2):135-148.
    [10] Lee YS, Jeong DH, Lee DY, et al. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J, 2010, 63(1):18-30.
    [11] Ishikawa R, Aoki M, Kurotani KI, et al. Phytochrome B regulates heading date 1(Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol Genet Genom, 2011, 285(6):461-470.
    [12] 詹克慧, 李志勇, 侯佩, 等. 利用修饰光敏色素信号途径进行作物改良的可行性. 中国农业科学, 2012, 45(16):3249-3255. Zhan KH, Li ZY, Hou P, et al. A new strategy for crop improvement through modification of phytochrome signalling pathways. Sci Agric Sin, 2012, 45(16):3249-3255(in Chinese).
    [13] Sheehan MJ, Kennedy LM, Costich DE, et al. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007, 49(2):338-353.
    [14] Yang S, Murphy RL, Morishige DT, et al. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS One, 2014, 9(8):e105352.
    [15] Wang N, Chen B, Xu K, et al. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci, 2016, 7:338.
    [16] Yoo YH, Nalini Chandran AK, Park JC, et al. OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-seq transcriptome analysis of rice genes in response to water deficiencies. Front Plant Sci, 2017, 8:580.
    [17] Du H, Huang F, Wu N, et al. Integrative regulation of drought escape through ABA-dependent and-independent pathways in rice. Mol Plant, 2018, 11(4):584-597.
    [18] Kwon CT, Song G, Kim SH, et al. Functional deficiency of phytochrome B improves salt tolerance in rice. Environ Exp Bot, 2018, 148:100-108.
    [19] He Y, Li Y, Cui L, et al. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front Plant Sci, 2016, 7:1963.
    [20] Bennetzen JL, Schmutz J, Wang H, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30(6):555-561.
    [21] Lata C, Gupta S, Prasad M. Foxtail millet:a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013, 33(3):328-343.
    [22] Diao XM, Jia GQ. Origin and domestication of foxtail millet. Genetics and Genomics of Setaria. Cham:Springer International Publishing, 2016:61-72.
    [23] 杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究, 2011, 29(5):69-74. Yang XW, Hu YG. Cloning of a DREB gene from foxtail millet (Setaria italica L.) and its expression during drought stress. Agric Res Arid Areas, 2011, 29(5):69-74(in Chinese).
    [24] Johnson E, Bradley M, Harberd NP, et al. Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions). Plant Physiol, 1994, 105(1):141-149.
    [25] Halliday KJ, Salter MG, Thingnaes E, et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J, 2003, 33(5):875-885.
    [26] Sheehan MJ, Farmer PR, Brutnell TP. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167(3):1395-1405.
    [27] 牛骧, 郭林, 杨宗举, 等. 2个玉米光敏色素C基因的转录丰度对多种光质处理的响应. 中国农业科学, 2017, 50(12):2209-2219. Niu X, Guo L, Yang ZJ, et al. Transcription abundances of two phytochrome C in response to different light treatments in Zea mays. Sci Agric Sin, 2017, 50(12):2209-2219(in Chinese).
    [28] Osugi A, Itoh H, Ikeda-Kawakatsu K, et al. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol, 2011, 157(3):1128-1137.
    [29] Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17(12):3311-3325.
    [30] Takano M, Hirochika H, Miyao A. Control of plant flowering time by regulation of phytochrome C expression:US7566815[P]. 2009-07-28.
    [31] Boggs JZ, Loewy K, Bibee K, et al. Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana. Plant Growth Regul, 2010, 60(2):77-81.
    [32] Liu J, Zhang F, Zhou JJ, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol, 2012, 78(3):289-300.
    [33] Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant, 2008, 1(1):75-83.
    [34] Carvalho RF, Quecini V, Peres LEP. Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls:physiological and genetic studies. Plant Sci, 2010, 178(3):258-264.
    [35] 顾建伟, 张方, 赵杰, 等. 光敏色素B介导光信号影响水稻的脱落酸途径. 科学通报, 2012, 57(25):2371-2379. Gu JW, Zhang F, Zhao J, et al. Light signals mediated by phytochrome B affect abscisic acid pathway in rice. Chin Sci Bull, 2012, 57(25):2371-2379(in Chinese).
    [36] Kraepiel Y, Rousselin P, Sotta B, et al. Analysis of phytochrome-and ABA-deficient mutants suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. Plant J, 1994, 6(5):665-672.
    [37] Chen XY, Ding X, Xu S, et al. Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol, 2009, 51(10):951-960.
    [38] Li L, Ljung K, Breton G, et al. Linking photoreceptor excitation to changes in plant architecture. Genes Dev, 2012, 26(8):785-790.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贾小平,张博,何占祥,李剑峰,张小梅,葛迪,王振山,桑璐曼,宋志伟. 谷子光敏色素基因光周期、非生物胁迫响应特性及关键自然变异位点鉴定[J]. 生物工程学报, 2022, 38(5): 1929-1945

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-26
  • 在线发布日期: 2022-05-18
文章二维码
您是第5991646位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司