放线菌核糖体工程的发展与应用
作者:
基金项目:

国家自然科学基金(41806158,32060021);江西省自然科学基金(20202BAB203021);安徽省高校自然科学研究项目(KJ2017A177);安徽医科大学2019年大学生创新创业训练计划项目(0805017103)


Development and application of ribosomal engineering in actinomycetes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [70]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    核糖体工程(ribosome engineering)是一项利用靶点位于细菌RNA聚合酶及核糖体功能因子的抗生素诱导细菌产生抗性突变,进而提升菌株次级代谢生产潜能的技术。该方法无需依赖菌株完善的遗传操作体系,可应用于发掘几乎所有放线菌菌株中潜在的宝贵活性次级代谢产物,并广泛应用于放线菌基因组挖掘和次级代谢产物增产优化。核糖体工程效果显著,迄今为止,已从百余种放线菌菌株中发掘了10余种新结构分子和提升近30种活性次级代谢产物的生产效价。鉴于此,文中从核糖体工程的发展角度出发,对该技术的建立与优化,及其作用机制的阐明进行了系统的归纳与总结;同时也全面分析探讨了该技术在放线菌次级代谢产物开发中的推广应用,以期为核糖体工程的发展完善及放线菌次级代谢产物的综合开发提供借鉴与参考。

    Abstract:

    Ribosomal engineering is a technique that can improve the biosynthesis of secondary metabolites in the antibiotics-resistant mutants by attacking the bacterial RNA polymerase or ribosome units using the corresponding antibiotics. Ribosomal engineering can be used to discover and increase the production of valuable bioactive secondary metabolites from almost all actinomycetes strains regardless of their genetic accessibility. As a consequence, ribosomal engineering has been widely applied to genome mining and production optimization of secondary metabolites in actinomycetes. To date, more than a dozen of new molecules were discovered and production of approximately 30 secondary metabolites were enhanced using actinomycetes mutant strains generated by ribosomal engineering. This review summarized the mechanism, development, and protocol of ribosomal engineering, highlighting the application of ribosomal engineering in actinomycetes, with the aim to facilitate future development of ribosomal engineering and discovery of actinomycetes secondary metabolites.

    参考文献
    [1] Barka EA, Vatsa P, Sanchez L, et al. Taxonomy physiology and natural products of Actinobacteria. Microbiol Mol Biol Rev, 2015, 80(1):1-43.
    [2] Genilloud O. Actinomycetes:still a source of novel antibiotics. Nat Prod Rep, 2017, 34(10):1203-1232.
    [3] Nepal KK, Wang G. Streptomycetes:surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv, 2019, 37(1):1-20.
    [4] Liu R, Deng Z, Liu T. Streptomyces species:ideal chassis for natural product discovery and overproduction. Metab Eng, 2018, 50:74-84.
    [5] Palazzotto E, Tong Y, Lee SY, et al. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv, 2019, 37(6):107366.
    [6] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod, 2016, 79(3):629-661.
    [7] Hug JJ, Bader CD, Remškar M, et al. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics (Basel), 2018, 7(2):44.
    [8] Durand GA, Raoult D, Dubourg G. Antibiotic discovery:history methods and perspectives. Int J Antimicrob Agents, 2019, 53(4):371-382.
    [9] Pishchany G. Applying microbial ecology to antimicrobial discovery, Curr Opin Microbiol, 2020, 57:7-12.
    [10] Abdelmohsen UR, Grkovic T, Balasubramanian S, et al. Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv, 2015, 33(6 Pt 1):798-811.
    [11] Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol, 2015, 13(8):509-523.
    [12] Ochi K. Insights into microbial cryptic gene activation and strain improvement:principle, application and technical aspects. J Antibiot (Tokyo), 2017, 70(1):25-40.
    [13] 蔡成平, 王远山, 郑裕国. 核糖体工程与微生物次级代谢产物合成. 生物技术通报, 2012(9):51-58. Cai CP, Wang YS, Zheng YG. Ribosome engineering and microorganism secondary metabolite production. Biotechnol Bull, 2012(9):51-58(in Chinese).
    [14] Ochi K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem, 2007, 71(6):1373-1386.
    [15] Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol, 2009, 27(5):462-464.
    [16] Ochi K, Hosaka T. New strategies for drug discovery:activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol, 2013, 97(1):87-98.
    [17] Mao D, Okada BK, Wu Y, et al. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr Opin Microbiol, 2018, 45:156-163.
    [18] Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways:avenues and challenges. Synth Syst Biotechnol, 2018, 3(3):163-178.
    [19] Zhu S, Duan Y, Huang Y. The Application of ribosome engineering to natural product discovery and yield improvement in Streptomyces. Antibiotics (Basel), 2019, 8(3):133.
    [20] Tan GY, Liu T. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab Eng, 2017, 39:228-236.
    [21] Foulston L. Genome mining and prospects for antibiotic discovery. Curr Opin Microbiol, 2019, 51:1-8.
    [22] Irving SE, Corrigan RM. Triggering the stringent response:signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology, 2018, 164(3):268-276.
    [23] Artsimovitch I, Patlan V, Sekine S, et al. Structural basis for transcription regulation by alarmone ppGpp. Cell, 2004, 117(3):299-310.
    [24] Okamoto S, Lezhava A, Hosaka T, et al. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol, 2003, 185(2):601-609.
    [25] Thong WL, Shin-ya K, Nishiyama M, et al. Discovery of an antibacterial isoindolinone-containing tetracyclic polyketide by cryptic gene activation and characterization of its biosynthetic gene cluster. ACS Chem Biol, 2018, 13(9):2615-2622.
    [26] Thong WL, Shin-ya K, Nishiyama M, et al. Methylbenzene-containing polyketides from a Streptomyces that spontaneously acquired rifampicin resistance:structural elucidation and biosynthesis. J Nat Prod, 2016, 79(4):857-864.
    [27] Tanaka Y, Kasahara K, Hirose Y, et al. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol, 2013, 195(13):2959-2970.
    [28] Ma Z, Luo S, Xu XH, et al. Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628. J Ind Microbiol Biotechnol, 2016, 43(4):463-471.
    [29] Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol, 1996, 178(24):7276-7284.
    [30] Hesketh A, Ochi K. A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot, 1997, 50(6):532-535.
    [31] Ochi K, Zhang D, Kawamoto S, et al. Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Mol Gen Genet, 1997, 256(5):488-498.
    [32] Okamoto-Hosoya Y, Sato T, Ochi K. Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot, 2000, 53(12):1424-1427.
    [33] Hu H, Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol, 2001, 67(4):1885-1892.
    [34] Xu J, Tozawa Y, Lai C, et al. Rifampicin resistant mutation in the rpoB gene confers ppGpp-independent antibiotic productivity to Streptomyces coelicolor and Streptomyces griseus. Mol Gen Genet, 2002, 268(2):179-189.
    [35] Hosaka T, Xu J, Ochi K. Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol, 2006, 61(4):883-897.
    [36] Nishimura K, Hosaka T, Tokuyama S, et al. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J Bacteriol, 2007, 189(10):3876-3883.
    [37] Wang G, Hosaka T, Ochi K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol, 2008, 74(9):2834-2840.
    [38] Tanaka Y, Komatsu M, Okamoto S, et al. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Appl Environ Microbiol, 2009, 75(14):4919-4922.
    [39] Wang G, Inaoka T, Okamoto S, et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother, 2009, 53(3):1019-1026.
    [40] Imai Y, Fujiwara T, Ochi K, et al. Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. J Antibiot, 2012, 65(6):323-326.
    [41] Lai C, Tozawa Y, Xu J, et al. Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology, 2002, 148(Pt 11):3365-3373.
    [42] Hu H, Zhang Q, Ochi K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol, 2002, 184(14):3984-3991.
    [43] Okamoto-Hosoya Y, Okamoto S, Ochi K. Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol, 2003, 69(7):4256-4259.
    [44] Hosoya Y, Okamoto S, Muramatsu H, et al. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother, 1998, 42(8):2041-2047.
    [45] 胡海峰, 张琴, 朱宝泉. 诱导对庆大霉素的低水平抗性加强微生物合成抗生素的能力. 中国天然药物, 2008, 6(2):146-152. Hu HF, Zhang Q, Zhu BQ. Enhanced antibiotic production by inducing low level of resistance to gentamicin. Chin J Nat Med, 2008, 6(2):146-152(in Chinese).
    [46] Li L, Guo J, Wen Y, et al. Overexpression of ri?敯湳杯業湥攠敲牥楣湹杣?慩湮摧?獦畡扣獴敯煲甠散湡瑵?晥敳爠浩敮湣瑲慥瑡楳潥湤?潰灲瑯楤浵楣穴慩瑯楮漠湯?映潡牶?敲湭桥慣湴捩敮搠????摩放潓硴祲?扰汴敯潭浹祣捥楳渠?婶?灲牭潩摴畩捬瑩楳漼港? ̄?灳灴汲??楮捳爮漠扊椠潉汮??楍潩瑣敲捯桢湩潯汬???は?????は????????ㄠ????ㄩ??户爳?嬶??崮??畲款慛椴?????漠托慁礬愠獊桩楮?????潌獩栠楙湄漬????敡瑬?愠汇???業湥挠潳浨祵捦楦湬?楮湧搠畯捦攠搼?猾敓捴潲湥摰慴牯祭?浣敥瑳愠扶潩汲楩獤浯?楨湲??楯?卥瑮牥敳瀼琯潩派礠捦敯獲?汩業癰楲摯慶湥獤??楲?????睩楯瑮栠?慦?浡當瑩慬瑡業潹湣?楮渮?瑁桰数?朠敍湩散?敯湢捩潯摬椠湂杩?瑴桥散?剮乯??瀠漲氰礱洳攬爠愹猷攨′戩攺琶愴?猭甶戴甸渮椼瑢? ̄?甴爸牝??楡据牧漠扌椬漠汚????????????????????㈠?????扶牥?孥??崠??漠獁栲氱愹?伸???潲灯慤瑵湣楴畩歯?????漼物社獓?佲??整瑯?慹汣???敲湯敳瑥楯捳慰汯汲祵?攼港杩椾渠敢敹爠敲摥??楲?牥灲猭???楤??洠攼物漾摲楰灳汌漼椯摩社?業浵灴慡捴瑩獯?猠敳捥潬湥摣慴物祯?洮攠瑊愠扁潰汰楬猠浍?慣湲摯?慩湯瑬椬戠椲漰琱椲挬?爱攱猲椨猶琩愺渱挰改‵椭渱??椱?匼瑢牲放灛琴漹浝礠捘敩獥??椬???坥潮爠汊搬????楧挬爠潂戬椠潥汴??楬漮琠敁捣桴湩潶污???の㈠????????????ent of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies. Microb Cell Fact, 2020, 19(1):159.
    [50] Gomez-Escribano JP, Bibb MJ. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol, 2011, 4(2):207-215.
    [51] 齐欢, 马正, 薛正莲, 等. 利福霉素抗性突变菌Streptomyces sp.HS-NF-1046R中的两个新化合物. 药学学报, 2019, 54(1):117-121. Qi H, Ma Z, Xue ZL, et al. Two new compounds from rifamycin resistant mutant strain Streptomyces sp. HS-NF-1046R. Acta Pharm Sin, 2019, 54(1):117-121(in Chinese).
    [52] Li LL, Ma TM, Liu Q, et al. Improvement of daptomycin production in Streptomyces roseosporus through the acquisition of pleuromutilin resistance. Biomed Res Int, 2013, 2013:479742.
    [53] Yu G, Hui M, Li R, et al. Enhancement of daptomycin production by the method of combining ribosome engineering and genome shuffling in Streptomyces roseosporus. Appl Biochem Microbiol, 2018, 54(6):611-615.
    [54] Zhang Y, Huang H, Xu S, et al. Activation and enhancement of fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Fact, 2015, 14:64.
    [55] Beltrametti F, Rossi R, Selva E, et al. Antibiotic production improvement in the rare actinomycete Planobispora rosea by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and to rifamycin. J Ind Microbiol Biotechnol, 2006, 33(4):283-288.
    [56] Fu P, Jamison M, La S, et al. Inducamides A-C, chlorinated alkaloids from an RNA polymerase mutant strain of Streptomyces sp.. Org Lett, 2014, 16(21):5656-5659.
    [57] Wang XJ, Wang XC, Xiang WS. Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet-and chemically induced mutants. World J Microbiol Biotechnol, 2009, 25(6):1051-1056.
    [58] Derewacz DK, Goodwin CR, McNees CR, et al. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. PNAS, 2013, 110(6):2336-2341.
    [59] 王耀耀, 刘云清, 朱研研, 等. 组合链霉素和利福平抗性突变去甲基万古霉素高产菌株的选育. 中国抗生素杂志, 2006, 31(4):243-246. Wang YY, Liu YQ, Zhu YY, et al. Screening of high yield norvancomycin producing strain by streptomycin and rifampicin resistant mutation. Chin J Antibio, 2006, 31(4):243-246(in Chinese).
    [60] Wang Q, Zhang D, Li Y, et al. Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production. Appl Biochem Biotechnol, 2014, 173(6):1553-1563.
    [61] Li YM, Li JY, Ye ZM, et al. Enhancement of angucycline production by combined UV mutagenesis and ribosome engineering and fermentation optimization in Streptomyces dengpaensis XZHG99T. Prep Biochem Biotechnol, 2021, 51(2):173-182.
    [62] Zhao YF, Song ZQ, Ma Z, et al. Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations. J Ind Microbiol Biotechnol, 2019, 46(5):697-708.
    [63] Tamehiro N, Hosaka T, Xu J, et al. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol, 2003, 69(11):6412-6417.
    [64] Zhang KP, Mohsin A, Dai YC, et al. Combinatorial effect of ARTP mutagenesis and ribosome engineering on an industrial strain of Streptomyces albus S12 for enhanced biosynthesis of salinomycin. Front Bioeng Biotechnol, 2019, 7:212.
    [65] Li D, Zhang JH, Tian YQ, et al. Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Sci China Life Sci, 2019, 62(2):276-279.
    [66] Li D, Tian YQ, Liu X, et al. Reconstitution of a mini-gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in Streptomyces albus. Microb Biotechno, 2020, 10.1111/1751-7915.13686.
    [67] Fukuda K, Tamura T, Ito H, et al. Production improvement of antifungal, antitrypanosomal nucleoside sinefungin by rpoB mutation and optimization of resting cell system of Streptomyces incarnatus NRRL 8089. J Biosci Bioeng, 2010, 109(5):459-465.
    [68] Liu L, Pan J, Wang Z, et al. Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234. J Ind Microbiol Biotechnol, 2018, 45(3):141-151.
    [69] Zhuang ZK, Jiang CZ, Zhang F, et al. Streptomycin-induced ribosome engineering complemented with fermentation optimization for enhanced production of 10-membered enediynes tiancimycin-A and tiancimycin-D. Biotechnol Bioeng, 2019, 116(6):1304-1314.
    [70] Liu H, Jiang C, Lin J, et al. Genome shuffling based on different types of ribosome engineering mutants for enhanced production of 10-membered enediyne tiancimycin-A. Appl Microbiol Biotechnol, 2020, 104(10):4359-4369.
    [71] Ma Z, Tao LB, Bechthold A, et al. Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628. Appl Microbiol Biotechnol, 2014, 98(11):5051-5058.
    [72] Tong QQ, Zhou YH, Chen XS, et al. Genome shuffling and ribosome engineering of Streptomyces virginiae for improved virginiamycin production. Bioprocess Biosyst Eng, 2018, 41(5):729-738.
    [73] Zhu X, Kong J, Yang, H, et al. Strain improvement by combined UV mutagenesis and ribosome
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢运昌,姚仕杰,李炜,单润润,吴贵贵,童图强,陈奇. 放线菌核糖体工程的发展与应用[J]. 生物工程学报, 2022, 38(2): 546-564

复制
分享
文章指标
  • 点击次数:532
  • 下载次数: 1049
  • HTML阅读次数: 1152
  • 引用次数: 0
历史
  • 收稿日期:2021-02-21
  • 在线发布日期: 2022-02-25
文章二维码
您是第5808959位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司