桃漆酶基因家族鉴定及其与冷害褐变的关系
作者:
基金项目:

浙江省重点研发计划项目(2019C02079);浙江省“生物工程”一流学科学生创新计划项目(CX2020023)


Identification of laccase gene family members in peach and its relationship with chilling induced browning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究桃果实漆酶(PpLAC) 基因家族成员的功能,利用生物信息分析方法对桃果实LAC基因成员进行鉴定,分析不同品种桃果实低温贮藏和外源γ-氨基丁酸(γ-aminobutyric acid,GABA) 处理下的表达模式及其与冷害褐变的关系,为桃果实抗冷害褐变机制提供理论依据。研究从桃果实基因组筛选了26个漆酶基因,这些漆酶基因分布于6条染色体上,含有5–7个外显子,基因结构和保守基序较为相似。根据聚类分析结果将桃果实PpLAC基因家族成员分为7个亚族。通过良方水蜜桃、湖景水蜜桃以及外源GABA处理组的转录组测序结果分析,发现PpLAC7PpLAC9在低温贮藏下表达量呈上升模式,且与褐变指数呈现相同的趋势。GABA处理组减轻桃果实褐变程度,且PpLAC7PpLAC9的表达也被抑制,推测PpLAC7PpLAC9可能与桃果实冷害褐变有关。

    Abstract:

    The laccase (PpLAC) gene family members in peach fruit were identified and the relationship between their expression pattern and chilling induced browning were investigated. The study was performed using two varieties of peaches with different chilling tolerance, treated with or without exogenous γ-aminobutyric acid (GABA) during cold storage. Twenty-six genes were screened from the peach fruit genome. These genes were distributed on 6 chromosomes and each contained 5–7 exons. The PpLAC gene family members shared relatively similar gene structure and conserved motifs, and they were classified into 7 subgroups based on the cluster analysis. Transcriptome sequencing revealed that the expression levels of PpLAC7 and PpLAC9 exhibited an increasing pattern under low temperature storage, and displayed a similar trend with the browning index of peach fruit. Notably, GABA treatment reduced the degree of browning and inhibited the expression of PpLAC7 and PpLAC9. These results suggested that PpLAC7 and PpLAC9 might be involved in the browning of peach fruit during cold storage.

    参考文献
    [1] Hoegger PJ, Kilaru S, James TY, et al. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. Febs J, 2006, 273(10): 2308-2326.
    [2] Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol, 2009, 82(4): 605-624.
    [3] Janusz G, Pawlik A, Świderska-Burek U, et al. Laccase properties, physiological functions, and evolution. Int J Mol Sci, 2020, 21(3): 966.
    [4] Turlapati PV, Kim KW, Davin LB, et al. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011, 233(3): 439-470.
    [5] Zhao Q, Nakashima J, Chen F, et al. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25(10): 3976-3987.
    [6] Yu Y, Li QF, Zhang JP, et al. Laccase-13 regulates seed setting rate by affecting hydrogen peroxide dynamics and mitochondrial integrity in rice. Front Plant Sci, 2017, 8: 1324.
    [7] Cheng X, Li G, Ma C, et al. Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS One, 2019, 14(2): e0210892.
    [8] Liu QQ, Luo L, Wang XX, et al. Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 2017, 18(2): E209.
    [9] Cho HY, Lee C, Hwang SG, et al. Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene, 2014, 552(1): 98-105.
    [10] Nitta K, Kataoka K, Sakurai T. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. J Inorg Biochem, 2002, 91(1): 125-131.
    [11] Liang M, Davis E, Gardner D, et al. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224(5): 1185-1196.
    [12] Lurie S, Crisosto CH. Chilling injury in peach and nectarine. Postharvest Biol Technol, 2005, 37(3): 195-208.
    [13] Yihui G, Song J, Du L, et al. Characterization of laccase from apple fruit during postharvest storage and its response to diphenylamine and L-methylcyclopropene treatments. Food Chem, 2018, 253: 314-321.
    [14] Fang F, Zhang XL, Luo HH, et al. An intracellular laccase is responsible for epicatechin-mediated anthocyanin degradation in Litchi fruit pericarp. Plant Physiol, 2015, 169(4): 2391-2408.
    [15] Wang ZY, Zhang YY, Li YY, et al. Relationship between LAC gene expression and core browning of yali pear. Sci Agric Sin, 2020, 53(24): 5073-5080 (in Chinese). 王梓宇, 张引引, 李月圆, 等. 漆酶LAC表达与鸭梨果心褐变的关系. 中国农业科学, 2020, 53(24): 5073-5080.
    [16] Ramesh SA, Tyerman SD, Gilliham M, et al. Gamma-aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci, 2017, 74(9): 1577-1603.
    [17] Michaeli S, Fromm H. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined. Front Plant Sci, 2015, 6: 419.
    [18] Palma F, Carvajal F, Jiménez-Muñoz R, et al. Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage. Plant Physiol Biochem, 2019, 136: 188-195.
    [19] Li JX, Zhou X, Wei BD, et al. GABA application improves the mitochondrial antioxidant system and reduces peel browning in 'Nanguo' pears after removal from cold storage. Food Chem, 2019, 297: 124903.
    [20] Shang HT, Cao SF, Yang ZF, et al. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J Agric Food Chem, 2011, 59(4): 1264-1268.
    [21] Soleimani Aghdam M, Naderi R, Jannatizadeh A, et al. Enhancement of postharvest chilling tolerance of Anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Sci Hortic, 2016, 198: 52-60.
    [22] Ali S, Khan AS, Anjum MA, et al. Effect of postharvest oxalic acid application on enzymatic browning and quality of Lotus (Nelumbo nucifera Gaertn. ) root slices. Food Chem, 2020, 312: 126051.
    [23] Pourcel L, Routaboul JM, Kerhoas L, et al. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17(11): 2966-2980.
    [24] Xu X, Zhou Y, Wang B, et al. Genome-wide identification and characterization of laccase gene family in Citrus sinensis. Gene, 2019, 689: 114-123.
    [25] Berni R, Piasecki E, Legay S, et al. Identification of the laccase-like multicopper oxidase gene family of sweet cherry (Prunus avium L. ) and expression analysis in six ancient Tuscan varieties. Sci Rep, 2019, 9(1): 3557.
    [26] Liu YY, Ni SS, Xiang LL, et al. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata. Acta Hortic Sin, 2020, 47(5): 837-852 (in Chinese). 刘彦英, 倪珊珊, 项蕾蕾, 等. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析. 园艺学报, 2020, 47(5): 837-852.
    [27] Jiao XY, Li GQ, Wang Y, et al. Systematic analysis of the Pleurotus ostreatus laccase gene (PoLac) family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules, 2018, 23(4): E880.
    [28] Jin P. Study on regulation and mechanisms of postharvest disease and chilling injury of peach fruit after harvest[D]. Nanjing: Nanjing Agricultural University, 2009 (in Chinese). 金鹏. 桃果实采后病害和冷害调控及其机理研究[D]. 南京: 南京农业大学, 2009.
    [29] Shang HT. Mechanism of cold injury symptom formation in peach fruit flocculent abortion and lignification[D]. Nanjing: Nanjing Agricultural University, 2011 (in Chinese). 尚海涛. 桃果实絮败和木质化两种冷害症状形成机理研究[D]. 南京: 南京农业大学, 2011.
    [30] Zhou HJ. Studies on postharvest physiology and storage technology of honey peach fruits[D]. Nanjing: Nanjing Agricultural University, 2009 (in Chinese). 周慧娟. 水蜜桃采后生理及贮藏保鲜技术研究[D]. 南京: 南京农业大学, 2009.
    [31] Lonergan G, Baker WL. Comparative study of substrates of fungal laccase. Lett Appl Microbiol, 1995, 21(1): 31-33 (in Chinese).
    [32] Shuai L, Zhao YQ, Liao LY, et al. Cloning and expression analysis of the laccase gene (DlLac) from Dimocarpus longan. Sci Technol Food Ind, 2017, 38(13): 95-100 (in Chinese). 帅良, 赵昱清, 廖玲燕, 等. 龙眼漆酶基因(DlLac)的克隆及表达分析. 食品工业科技, 2017, 38(13): 95-100.
    [33] Zimdars S, Hitschler J, Schieber A, et al. Oxidation of wine polyphenols by secretomes of wild Botrytis cinerea strains from white and red grape varieties and determination of their specific laccase activity. J Agric Food Chem, 2017, 65(48): 10582-10590.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王康,杨民杰,吴思宜,刘庆丽,曹士锋,陈伟,施丽愉. 桃漆酶基因家族鉴定及其与冷害褐变的关系[J]. 生物工程学报, 2022, 38(1): 264-274

复制
分享
文章指标
  • 点击次数:293
  • 下载次数: 1033
  • HTML阅读次数: 1238
  • 引用次数: 0
历史
  • 收稿日期:2021-05-24
  • 在线发布日期: 2022-01-25
文章二维码
您是第6419007位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司