猪源ST11型艰难梭菌TcdB毒素受体结合域双抗体夹心ELISA的建立
作者:
基金项目:

四川省国际科技创新合作/港澳台科技创新合作项目(2019YFH0067)


Development of a double-antibody sandwich ELISA targeting the receptor binding domain of TcdB toxin of ST11 type Clostridium difficile of porcine origin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    艰难梭菌是一种重要的人兽共患肠道病原菌,广泛存在于人和多种动物体内。ST11型艰难梭菌是国际上流行最广泛、危害最大的亚型之一。我国作为养猪业大国,猪源艰难梭菌的检测方法欠缺,给猪场艰难梭菌的防控留下隐患。本研究旨在建立一种特异、敏感的双抗体夹心ELISA,为猪源ST11型艰难梭菌流行病学调查提供血清学检测方法。首先采用原核表达并纯化出97 kDa的受体结合域(receptor binding domain, RBD) 蛋白,并利用杂交瘤技术成功筛选出能稳定分泌针对RBD蛋白的单克隆抗体杂交瘤细胞AE2D3,经检测其抗体亚型为IgG2b (κ)。其次以针对RBD蛋白的单克隆抗体为检测抗体、兔多克隆抗体为捕获抗体,运用棋盘法确定了捕获抗体和检测抗体的配对浓度、抗原包被条件、封闭条件、检测抗体和待检样品的孵育条件、羊抗小鼠IgG/HRP和TMB显色液反应条件。经测定,此方法的临界值OD450为0.152,与13株非ST11型的艰难梭菌无交叉反应,对RBD蛋白的最低检测浓度为8.83 ng/mL。这一特异、敏感、可用于兽医临床检测猪源ST11型艰难梭菌的双抗体夹心ELISA,为养猪业ST11型艰难梭菌流行病学调查提供了可靠的血清学检测方法。

    Abstract:

    Clostridium difficile is an important zoonotic intestinal pathogen, which is widely present in humans and a variety of animals. The ST11 type C. difficile is one of the most widespread and harmful subtypes in the world. As a large country in pig farming, China lacks efficient methods for detecting C. difficile of porcine origin, leaving hidden dangers for the prevention and control of C. difficile. The aim of this study was to develop a specific and sensitive double-antibody sandwich ELISA for the epidemiological investigation of ST11 type C. difficile of porcine origin. Firstly, a 97 kDa receptor binding domain (RBD) was expressed in a prokaryotic host and purified. A hybridoma cell line AE2D3 capable of stably secreting monoclonal antibody targeting the RBD was screened, and the antibody subtype was determined to be IgG2b (κ). Secondly, a double antibody sandwich ELISA method was developed, where the monoclonal antibody targeting the RBD was used as a detection antibody, and the rabbit polyclonal antibody was used as a capture antibody. The chessboard method was used to determine the matching concentration of the capture antibody and the detection antibody, the antigen coating conditions, the blocking conditions, the incubation conditions for detection antibody and samples to be tested, as well as the reaction conditions of HRP-conjugated and reaction conditions of TMB chromogenic solution. The negative cutoff OD450 was 0.152, and no cross-reaction with 13 strains of non-ST11 type C. difficile was found. The minimum detection concentration of RBD was 8.83 ng/mL. This specific and sensitive double-antibody sandwich ELISA provides a reliable serological detection method for epidemiological investigation of the ST11 type C. difficile in pig industry.

    参考文献
    [1] Hopman NE, Keessen EC, Harmanus C, et al. Acquisition of Clostridium difficile by piglets. Vet Microbiol, 2011, 149(1/2): 186-192.
    [2] Aktories K, Schwan C, Jank T. Clostridium difficile toxin biology. Annu Rev Microbiol, 2017, 71: 281-307.
    [3] Kelly CP, LaMont JT. Clostridium difficile——more difficult than ever. N Engl J Med, 2008, 359(18): 1932-1940.
    [4] Knetsch CW, Connor TR, Mutreja A, et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Eurosurveillance, 2014, 19(45): 20954.
    [5] Rodriguez C, Taminiau B, Van Broeck J, et al. Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe, 2012, 18(6): 621-625.
    [6] Rodriguez C, Taminiau B, Van Broeck J, et al. Clostridium difficile in food and animals: a comprehensive review. Adv Exp Med Biol, 2016, 932: 65-92.
    [7] Moono P, Putsathit P, Knight DR, et al. Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery. Anaerobe, 2016, 37: 62-66.
    [8] Schneeberg A, Neubauer H, Schmoock G, et al. Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol, 2013, 51(11): 3796-3803.
    [9] Avbersek J, Janezic S, Pate M, et al. Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe, 2009, 15(6): 252-255.
    [10] Goldová J, Malinová A, Indra A, et al. Clostridium difficile in piglets in the Czech Republic. Folia Microbiol, 2012, 57(2): 159-161.
    [11] Goorhuis A, Bakker D, Corver J, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis, 2008, 47(9): 1162-1170.
    [12] Kuehne SA, Cartman ST, Heap JT, et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature, 2010, 467(7316): 711-713.
    [13] Smits WK, Lyras D, Lacy DB, et al. Clostridium difficile infection. Nat Rev Dis Primers, 2016, 2: 16020.
    [14] Wang S, Wang Y, Cai Y, et al. Novel chimeric protein vaccines against Clostridium difficile infection. Front Immunol, 2018, 9: 2440.
    [15] Genth H, Selzer J, Busch C, et al. New method to generate enzymatically deficient Clostridium difficile toxin B as an antigen for immunization. Infect Immun, 2000, 68(3): 1094-1101.
    [16] Chen W. The preparation and preliminary application of monoclonal antibodies to Clostridium difficile toxin B receptor binding region[D]. Changsha: Central South University, 2014 (in Chinese). 陈伟. 抗艰难梭菌毒素B受体结合区单克隆抗体制备及初步应用研究[D]. 长沙: 中南大学, 2014.
    [17] Chen SY. Research on the function of translocation domain of Clostridium difficile toxin B and application of anti-toxin B monoclonal antibodies[D]. Guangzhou: South China University of Technology, 2016 (in Chinese). 陈淑仪. 艰难梭菌毒素TcdB转位结构域的功能及TcdB单克隆抗体的制备与应用研究[D]. 广州: 华南理工大学, 2016.
    [18] Barbut F, Kajzer C, Planas N, et al. Comparison of three enzyme immunoassays, a cytotoxicity assay, and toxigenic culture for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol, 1993, 31(4): 963-967.
    [19] Wang B. Molecular typing of Clostridium difficile surveyed from neonatal pigs in Sichuan district[D]. Ya'an: Sichuan Agricultural University, 2018 (in Chinese). 王博. 四川地区仔猪艰难梭菌分子分型调查研究[D]. 雅安: 四川农业大学, 2018.
    [20] Putsathit P, Neela VK, Joseph NMS, et al. Molecular epidemiology of Clostridium difficile isolated from piglets. Vet Microbiol, 2019, 237: 108408.
    [21] Lim SC, Knight DR, Riley TV. Clostridium difficile and one health. Clin Microbiol Infect, 2020, 26(7): 857-863.
    [22] Keessen EC, Hopman NE, van Leengoed LA, et al. Evaluation of four different diagnostic tests to detect Clostridium difficile in piglets. J Clin Microbiol, 2011, 49(5): 1816-1821.
    [23] Riley TV, Lyras D, Douce GR. Status of vaccine research and development for Clostridium difficile. Vaccine, 2019, 37(50): 7300-7306.
    [24] McCollum DL, Rodriguez JM. Detection, treatment, and prevention of Clostridium difficile infection. Clin Gastroenterol Hepatol, 2012, 10(6): 581-592.
    [25] Carroll KC, Loeffelholz M. Conventional versus molecular methods for the detection of Clostridium difficile. J Clin Microbiol, 2011, 49(9_Supplement): S49-S52.
    [26] Doing KM, Hintz MS, Keefe C, et al. Reevaluation of the premier Clostridium difficile toxin A and B immunoassay with comparison to glutamate dehydrogenase common antigen testing evaluating Bartels cytotoxin and Prodesse ProGastroTM Cd polymerase chain reaction as confirmatory procedures. Diagn Microbiol Infect Dis, 2010, 66(2): 129-134.
    [27] Tenover FC, Novak-Weekley S, Woods CW, et al. Impact of strain type on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol, 2010, 48(10): 3719-3724.
    [28] Planche T, Aghaizu A, Holliman R, et al. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis, 2008, 8(12): 777-784.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁伟,全柯吉,赵勤,武耀民,穆瑜,曹三杰. 猪源ST11型艰难梭菌TcdB毒素受体结合域双抗体夹心ELISA的建立[J]. 生物工程学报, 2022, 38(1): 185-195

复制
分享
文章指标
  • 点击次数:233
  • 下载次数: 1187
  • HTML阅读次数: 825
  • 引用次数: 0
历史
  • 收稿日期:2021-05-17
  • 在线发布日期: 2022-01-25
文章二维码
您是第6313038位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司