一组绵羊OLA Ⅰ蛋白与绵羊痘病毒多肽的复性组装
作者:
基金项目:

国家自然科学基金(31872449, 31972687)


Expression and refolding of OLA Ⅰ protein with peptides derived from sheeppox virus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究旨在体外组装小尾寒羊OLA Ⅰ蛋白与绵羊痘病毒多肽复合物,筛选绵羊痘病毒CTL表位肽。首先克隆小尾寒羊OLA Ⅰ重链基因胞外区OLA Ⅰ α-BSP和轻链基因OLA Ⅰ-β2m,将获得的轻、重链基因分别插入原核表达载体pET-28a(+)并转化至BL21(DE3) 细胞进行诱导表达,收集菌体超声破碎,过镍柱纯化获得一定纯度的OLA Ⅰ重链和轻链β2m包涵体蛋白,稀释复性法将获得的轻、重链包涵体蛋白与绵羊痘病毒多肽PV4按摩尔比为1︰1︰1的比例进行共复性,分子筛层析验证复性情况,ELISPOT试验评价OLA Ⅰ分子限制性多肽引起的T细胞免疫应答。结果表明,克隆获得的重、轻链基因正确表达,大小分别为36.3 kDa和16.7 kDa,分子筛和SDS-PAGE结果表明,绵羊痘病毒多肽PV4与OLA Ⅰ分子稳定结合,ELISPOT试验确定该多肽可刺激引起T细胞免疫应答。本研究建立了小尾寒羊OLA Ⅰ分子轻、重链的原核表达体系,实现该轻、重链与绵羊痘病毒多肽PV4的复性,确定了1个绵羊痘病毒CTL表位肽,为下一步解析该复合物的结构及对羊痘CTL表位筛选提供思路。

    Abstract:

    The aim of this study was to refold the OvisAries leukocyte antigen (OLA) class Ⅰ protein with peptides derived from sheeppox virus (SPPV) to identify SPPV T cell epitopes. Two pairs of primers were designed based on the published sequence of a sheep major histocompatibility complex Ⅰ to amplify the heavy chain gene of OLA Ⅰ α-BSP and the light chain gene of OLA Ⅰ-β2m. Both genes were cloned into a pET-28a(+) expression vector, respectively, and induced with ITPG for protein expression. After purification, the heavy chain and light chain proteins as well as peptides derived from SPPV were refolded at a ratio of 1:1:1 using a gradual dilution method. Molecular exclusion chromatography was used to test whether these peptides bind to the OLA Ⅰ complex. T-cell responses were assessed using freshly isolated PBMCs from immunized sheep through IFN-γ ELISPOT with peptides derived from SPPV protein. The results showed that the cloned heavy chain and light chain expressed sufficiently, with a molecular weight of 36.3 kDa and 16.7 kDa, respectively. The protein separated via a SuperdexTM 200 increase 10/300 GL column was collected and verified by SDS-PAGE after refolding. One SPPV CTL epitope was identified after combined refolding and functional studies based on T-cell epitopes derived from SPPV. An OLA Ⅰ/peptide complex was refolded correctly, which is necessary for the structural characterization. This study may contribute to the development of sheep vaccine based on peptides.

    参考文献
    [1] Hammarlund E, Dasgupta A, Pinilla C, et al. Monkeypox virus evades antiviral CD4+ and CD8+ T cell responses by suppressing cognate T cell activation. PNAS, 2008, 105(38): 14567-14572.
    [2] Zheng SJ. Veterinary Molecular Immunology. Beijing: China Agricultural Press, 2015 (in Chinese). 郑世军. 动物分子免疫学. 北京: 中国农业出版社, 2015.
    [3] Gao FS, Fang QM, Li YG, et al. Reconstruction of a swine SLA-Ⅰ protein complex and determination of binding nonameric peptides derived from the foot-and-mouth disease virus. Vet Immunol Immunopathol, 2006, 113(3/4): 328-338.
    [4] Gao FS, Zhai XX, Jiang P, et al. Identification of two novel foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-Ⅰ proteins. Gene, 2018, 653: 91-101.
    [5] Zhang NZ, Qi JX, Feng SJ, et al. Crystal structure of swine major histocompatibility complex class Ⅰ SLA-1*0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. J Virol, 2011, 85(22): 11709-11724.
    [6] Fan SH, Wang YL, Wang S, et al. Polymorphism and peptide-binding specificities of porcine major histocompatibility complex (MHC) class Ⅰ molecules. Mol Immunol, 2018, 93: 236-245.
    [7] Pan XC, Zhang NZ, Wei XH, et al. Illumination of PRRSV cytotoxic T lymphocyte epitopes by the three-dimensional structure and peptidome of swine lymphocyte antigen class Ⅰ (SLA-Ⅰ). Front Immunol, 2020, 10: 2995.
    [8] Yeruham I, Yadin H, Van Ham M, et al. Economic and epidemiological aspects of an outbreak of sheeppox in a dairy sheep flock. Vet Rec, 2007, 160(7): 236-237.
    [9] Babiuk S, Bowden TR, Boyle DB, et al. Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle. Transbound Emerg Dis, 2008, 55(7): 263-272.
    [10] Yan XM, Chu YF, Wu GH, et al. An outbreak of sheep pox associated with goat poxvirus in Gansu province of China. Vet Microbiol, 2012, 156(3/4): 425-428.
    [11] He CC, Tong JJ, Zhang XP, et al. Comparative analysis of ankyrin (ANK) genes of five capripoxviruses isolate strains from Xinjiang province in China. Virol J, 2020, 17: 133.
    [12] Zhao ZX, Fan B, Wu GH, et al. Development of loop-mediated isothermal amplification assay for specific and rapid detection of differential goat pox virus and sheep pox virus. BMC Microbiol, 2014, 14: 10.
    [13] Lu G, Xie JX, Luo JL, et al. Lumpy skin disease outbreaks in China, since 3 August 2019. Transbound Emerg Dis, 2021, 68(2): 216-219.
    [14] Tuppurainen ESM, Oura CAL. Review: lumpy skin disease: an emerging threat to Europe, the Middle East and Asia. Transbound Emerg Dis, 2012, 59(1): 40-48.
    [15] Abutarbush SM, Hananeh WM, Ramadan W, et al. Adverse reactions to field vaccination against lumpy skin disease in Jordan. Transbound Emerg Dis, 2016, 63(2): e213-e219.
    [16] Hamdi J, Bamouh Z, Jazouli M, et al. Experimental evaluation of the cross-protection between sheeppox and bovine lumpy skin vaccines. Sci Rep, 2020, 10: 8888.
    [17] Tuppurainen ESM, Venter EH, Shisler JL, et al. Review: capripoxvirus diseases: current status and opportunities for control. Transbound Emerg Dis, 2017, 64(3): 729-745.
    [18] Baron MD, Diop B, Njeumi F, et al. Future research to underpin successful peste des petits ruminants virus (PPRV) eradication. J Gen Virol, 2017, 98(11): 2635-2644.
    [19] Garboczi DN, Hung DT, Wiley DC. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. PNAS, 1992, 89(8): 3429-3433.
    [20] Silver ML, Parker KC, Wiley DC. Reconstitution by MHC-restricted peptides of HLA-A2 heavy chain with β2-microglobulin, in vitro. Nature, 1991, 350(6319): 619-622.
    [21] Davies DH, Liang XW, Hernandez JE, et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. PNAS, 2005, 102(3): 547-552.
    [22] Hermanson G, Chun S, Felgner J, et al. Measurement of antibody responses to modified vaccinia virus Ankara (MVA) and Dryvax® using proteome microarrays and development of recombinant protein ELISAs. Vaccine, 2012, 30(3): 614-625.
    [23] Li X, Liu J, Qi JX, et al. Two distinct conformations of a rinderpest virus epitope presented by bovine major histocompatibility complex class Ⅰ N*01801: a host strategy to present featured peptides. J Virol, 2011, 85(12): 6038-6048.
    [24] Li XY, Zhang LJ, Liu YJ, et al. Structures of the MHCⅠ molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope. J Biol Chem, 2020, 295(16): 5292-5306.
    [25] Wu YN, Wang JY, Fan SH, et al. Structural definition of duck major histocompatibility complex class Ⅰ molecules that might explain efficient cytotoxic T lymphocyte immunity to influenza a virus. J Virol, 2017, 91(14): e02511-e02516.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王战红,赵志荀,吴国华,邓阳,朱国强,赵芳燕,卢曾军,张强. 一组绵羊OLA Ⅰ蛋白与绵羊痘病毒多肽的复性组装[J]. 生物工程学报, 2022, 38(1): 139-147

复制
分享
文章指标
  • 点击次数:269
  • 下载次数: 974
  • HTML阅读次数: 742
  • 引用次数: 0
历史
  • 收稿日期:2021-02-25
  • 在线发布日期: 2022-01-25
文章二维码
您是第6429489位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司