植物种子老化的生理学研究进展
作者:
基金项目:

黑龙江省博士后科研启动基金(LBH-Q19063);黑龙江省自然科学基金优秀青年基金(YQ2019C005)


The physiology of plant seed aging: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    种子品质的优劣对于农牧业生产、经济与遗传资源有效利用、生物多样性保护以及植物群落恢复与重建具有重要的作用。种子老化是其在贮藏过程中普遍存在的一种生理现象,是随着种子贮藏时间延长而发生和发展的自然不可逆过程,不仅关系到后续种、苗生长与产量、品质等问题,还对植物种质资源的保存、利用和开发等均具有重要影响。种子老化的生理机制复杂多样,现有研究往往仅进行常规的生理特征分析,缺乏系统、全面的深入探讨。基于此,文中对国内外关于种子老化的生理学研究进展进行了归纳与总结,从种子老化的方法、老化对种子发芽的影响、种子老化的生理和分子机制几个方面进行了综述。针对种子老化过程中如种子活力、电导率(electrical conductivity, EC)、丙二醛(malondialdehyde, MDA) 含量,种子内贮藏物质、抗氧化酶活性、线粒体结构等一系列生理参数的变化;并从种子的转录组、蛋白质组和老化相关基因功能等层面阐明了种子老化的机制,为种子生物学的研究和种质资源保存与利用等科学问题提供了一定的理论依据。

    Abstract:

    Seed quality plays an important role in the agricultural and animal husbandry production, the effective utilization of genetic resources, the conservation of biodiversity and the restoration and reconstruction of plant communities. Seed aging is a common physiological phenomenon during storage. It is a natural irreversible process that occurs and develops along with the extension of seed storage time. It is not only related to the growth, yield and quality of seed and seedling establishment, but also has an important effect on the conservation, utilization and development of plant germplasm resources. The physiological mechanisms of seed aging are complex and diverse. Most studies focus on conventional physiological characterization, while systematic and comprehensive in-depth studies are lacking. Here we review the recent advances in understanding the physiology of seed aging process, including the methods of seed aging, the effect of aging on seed germination, and the physiological and molecular mechanisms of seed aging. The change of multiple physiological parameters, including seed vigor, electrical conductivity, malondialdehyde content and storage material in the seed, antioxidant enzyme activity and mitochondrial structure, were summarized. Moreover, insights into the mechanism of seed aging from the aspects of transcriptome, proteome and aging related gene function were summarized. This study may facilitate the research of seed biology and the conservation and utilization of germplasm resources.

    参考文献
    [1] Bai YL, Yun L, Song BZ. Effects of storage time on seed vigor of Psathyrostachys juncea. Seed, 2015, 34(8): 33-38 (in Chinese). 白亚利, 云岚, 宋百枝. 新麦草种子贮藏时间对种子活力的影响. 种子, 2015, 34(8): 33-38.
    [2] Song WJ, Yan QC, Hu WM. Principle and method of seed vigor determination. Beijing: China Agricultural Publishing House, 2006 (in Chinese). 宋文坚, 颜启传, 胡伟民. 种子活力测定的原理和方法. 北京: 中国农业出版社, 2006.
    [3] Li SM, Dong LP, Sun JY, et al. Effect of artificial accelerated aging of 2 wheat cultivars on seed germination and physiological and biochemical characteristics. J Jilin Agric Sci, 2012, 37(5): 18-20 (in Chinese). 李淑梅, 董丽平, 孙君艳, 等. 人工加速老化对2个小麦品种发芽和种子生理生化特性的影响. 吉林农业科学, 2012, 37(5): 18-20.
    [4] Du J, Cao GY, Yang Y, et al. Effects of artificial accelerated aging on physiological and biochemical characteristics of wheat seeds. Tianjin Agric Sci, 2016, 22(1): 32-36 (in Chinese). 杜锦, 曹高燚, 杨勇, 等. 人工老化对不同品种小麦种子生理生化特性的影响. 天津农业科学, 2016, 22(1): 32-36.
    [5] Zhan MX. Research progress of seed aging and vigor restoration. Seed Sci Technol, 2017, 35(6): 112-113 (in Chinese). 詹明兴. 种子老化及活力修复研究进展分析. 种子科技, 2017, 35(6): 112-113.
    [6] Liu MJ, Wang TG, Chen SL, et al. Physioloycial and seed vigour changes of maize seeds during artificial aging course. J Nucl Agric Sci, 2008, 22(4): 510-513 (in Chinese). 刘明久, 王铁固, 陈士林, 等. 玉米种子人工老化过程中生理特性与种子活力的变化. 核农学报, 2008, 22(4): 510-513.
    [7] Delouche JC, Baskin CC. Accelerated aging techniques for predicting the relative storability of seeds lots. Seed Sci Technol, 1973, 1(2): 427-452.
    [8] Musgrave ME, Priestley DA, Leopold AC. Methanol stress as a test of seed vigor. Crop Science, 1980, 20: 626-630.
    [9] Bhattacharyya S, Hazra AK, Sen Mandi S. Accelerated aging of seeds in hot water germination characteristics of aged wheat seeds. Seed Sci Technol, 1985, 13(3): 683-690.
    [10] Bennett Mark A, Evans Andrew F, Grassbaugh M. Saturated salt accelerated aging (SSAA) test for assessing and comparing sh2 and sweet corn seedlots. Proc Int Seed Testing Assoc, 2001, 26: 11.
    [11] Di H, Lü TT, Liu LL, et al. Comparative analysis on phenotypic measurement of maize seeds storability by artificial aging methods. J Maize Sci, 2015, 23(3): 71-75 (in Chinese). 邸宏, 吕婷婷, 刘玲玲, 等. 不同人工老化法测定玉米种子耐储性的比较分析. 玉米科学, 2015, 23(3): 71-75.
    [12] Zhao S, Zhao YL, Pan XQ, et al. Artificial aging of cabbage seeds and biological effects. North Hortic, 2019(24): 7-13 (in Chinese). 赵硕, 赵颖雷, 潘学勤, 等. 甘蓝种子的人工老化及其生物学效应. 北方园艺, 2019(24): 7-13.
    [13] Xu BM, Gu ZH. Artificial aging seed experiment with methanol. Seed, 1985, 4(5): 16-17 (in Chinese). 徐本美, 顾增辉. 用甲醇进行人工老化种子实验. 种子, 1985, 4(5): 16-17.
    [14] Liu Q, Ren M, Liu XJ. Research progress on the seed storability. J Inn Mong Norm Univ (Nat Sci Ed), 2003, 32(3): 248-255 (in Chinese). 刘强, 任敏, 刘祥君. 种子耐贮性研究进展. 内蒙古师范大学学报(自然科学汉文版), 2003, 32(3): 248-255.
    [15] Li Wenxiang, Yan Qiquan. Differences in properties between naturally and artificially aged hybrid rice seeds. Hybrid Rice, 1997, 12(3): 29-31 (in Chinese). 李稳香, 颜启传. 杂交水稻自然老化种子与人工老化种子性能差异研究. 杂交水稻, 1997, 12(3): 29-31.
    [16] Wang YJ, Wu W, Guo ZJ, et al. Effects of aging treatment on germination index and root system of wheat. J Nucl Agric Sci, 2018, 32(12): 2423-2430 (in Chinese). 王玉娇, 吴薇, 郭忠军, 等. 小麦种子老化处理对发芽指标及根系的影响. 核农学报, 2018, 32(12): 2423-2430.
    [17] Chang HW, Zhang FL, Yang ZR, et al. Physiological and biochemical responses of Allium mongolicum seeds to storage aging. Plant Physiol J, 2015, 51(7): 1075-1081 (in Chinese). 常海文, 张凤兰, 杨忠仁, 等. 沙葱种子贮藏陈化过程中的生理生化应答反应. 植物生理学报, 2015, 51(7): 1075-1081.
    [18] Fang QH, Liu H, Zhao GQ, et al. Genetic integrity analysis of oat seeds by artificial aging and natural aging. Acta Agrestia Sin, 2019, 27(4): 1052-1059 (in Chinese). 方青慧, 刘欢, 赵桂琴, 等. 自然老化与人工老化对燕麦种子的遗传完整性分析比较. 草地学报, 2019, 27(4): 1052-1059.
    [19] Wang FW, Wang R, Jing W, et al. Quantitative dissection of lipid degradation in rice seeds during accelerated aging. Plant Growth Regul, 2012, 66(1): 49-58.
    [20] Ouzouline M, Tahani N, Demandre C, et al. Effects of accelerated aging upon the lipid composition of seeds from two soft wheat varieties from Morocco. Grasasy Aceites, 2009, 60(4).
    [21] Sahu AK, Sahu B, Soni A, et al. Active oxygen species metabolism in neem (Azadirachta indica) seeds exposed to natural ageing and controlled deterioration. Acta Physiol Plant, 2017, 39(9): 1-12.
    [22] Brar NS, Kaushik P, Dudi BS. Assessment of natural ageing related physio-biochemical changes in onion seed. Agriculture, 2019, 9(8): 163.
    [23] Zhang HB, Yang GJ, Gao WD, et al. Study on the seed vigor of Toona sinensis under specific storage conditions. For Res, 2019, 32(2): 152-159 (in Chinese). 张海波, 杨桂娟, 高卫东, 等. 香椿种子特定贮藏条件下活力变化的研究. 林业科学研究, 2019, 32(2): 152-159.
    [24] Zhang CH, Qu HT, Sun J. Related changes and research progress of seed aging. China Agric Inf, 2016(6): 3 (in Chinese). 张春慧, 曲红彤, 孙杰. 种子老化过程中的相关变化及研究进展. 中国农业信息, 2016(6): 3.
    [25] Xu L, Bao WK, He YH. Changes of seed storage substance and its storage physiology. Seed, 2003, 22(5): 60-63 (in Chinese). 徐亮, 包维楷, 何永华. 种子贮藏物质变化及其贮藏生理. 种子, 2003, 22(5): 60-63.
    [26] Zhu YS. Effects of priming on physiological and biochemical changes of aging barley seeds. Shihezi: Shihezi University, 2019 (in Chinese). 朱迎树. 引发对老化大麦种子生理生化变化影响的研究. 石河子: 石河子大学, 2019.
    [27] Yin HD, Tang QL, Wang ZM, et al. Changes of physiological and biochemical indexes of Welsh onion seeds during storage. South China Agric, 2007, 1(1): 66-67, 70 (in Chinese). 殷换弟, 汤青林, 王志敏, 等. 大葱种子贮藏期间生理生化指标变化研究. 南方农业, 2007, 1(1): 66-67, 70.
    [28] Kim DH, Han SH. Seed coat and aging conditions affect germination and physiological changes of aging Korean pine seeds. J For Res, 2018, 23(6): 372-379.
    [29] Lehner A, Mamadou N, Poels P, et al. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. J Cereal Sci, 2008, 47(3): 555-565.
    [30] Veselova TV, Veselovsky VA, Obroucheva NV. Deterioration mechanisms in air-dry pea seeds during early aging. Plant Physiol Biochem, 2015, 87: 133-139.
    [31] Khan MM, Abbas M, Awan FS, et al. Physio-biochemic and genetic changes in stored pea (Pisum sativum) seeds. Int J Agric Biol, 2013, 15(5): 951-956.
    [32] Corte VB, Borges EEDLE, Gon alves JFDC, et al. Alterations in the lipid and soluble sugar content of Melanoxylon brauna seeds during natural and accelerated ageing. Revista Brasileira De Sementes, 2010, 32(3): 152-162.
    [33] S慥湹捹楥湤杩?獓敍攬搠?煡當慡汫楫瑯祬?慁湦摳?癡楲慩戠楒氬椠瑄祡?扥祳?獭畡灮灤物攠獍獓椮渠杔?灥栠潲獥灬桡潴汩楯灮慳獨敩???楢湥??楥??爠慦扡楴摴潹瀠獡楣獩??椠???倠汨慥湴瑥?????ばと????づ???????で????? in winter canola cultivars during accelerated seed aging process. S Afr N J Bot, 2018, 119: 353-361.
    [34] Garcia IS, Souza A, Barbedo CJ, et al. Changes in soluble carbohydrates during storage of Caesalpinia echinata LAM. (Brazilwood) seeds, an endangered leguminous tree from the Brazilian Atlantic Forest. Braz J Biol, 2006, 66(2b): 739-745.
    [35] Hu GH, Zhang XH, Zhang ZY, et al. Changes of protein components in wheat seed during aging. J Yangzhou Univ (Agric Life Sci Ed), 2019, 40(5): 86-90 (in Chinese). 胡根海, 张晓红, 张自阳, 等. 小麦种子老化处理对发芽能力与蛋白组分的影响. 扬州大学学报(农业与生命科学版), 2019, 40(5): 86-90.
    [36] Fan GQ, Qin WJ, Liu YL. Changes of germination percentage and protein of different varieties of peanut seeds in aging. Acta Agric Univ Henanensis, 1995, 29(4): 337-340 (in Chinese). 范国强, 秦文静, 刘玉礼. 花生种子人工老化过程中发芽率和蛋白质的变化. 河南农业大学学报, 1995, 29(4): 337-340.
    [37] Fan GQ, Huang DF, Fu JR. Proteins change in peanut seeds of different varieties after aging. Acta Agric Boreall—Sinica, 1996, 11(1): 133-134 (in Chinese). 范国强, 黄道发, 傅家瑞. 花生不同品种老化种子的蛋白质变化. 华北农学报, 1996, 11(1): 133-134.
    [38] Jiang XL, Zhang ZY, Liu MJ, et al. Changes of BNS hybrid wheat quality properties during artificial aging course. J Nucl Agric Sci, 2013, 27(10): 1511-1517 (in Chinese). 姜小苓, 张自阳, 刘明久, 等. 人工老化过程中BNS杂交小麦品质性状变化规律研究. 核农学报, 2013, 27(10): 1511-1517.
    [39] Jin ZY, Xu TQ, Zhang Y, et al. Review of the relationship between mitochondria and seed aging. Mol Plant Breed, 2021, 19(5): 1687-1691 (in Chinese). 金泽阳, 许天琪, 张尹, 等. 种子老化与线粒体关系的研究进展. 分子植物育种, 2021, 19(5): 1687-1691.
    [40] Benamar A, Tallon C, Macherel D. Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci Res, 2003, 13(1): 35-45.
    [41] Wang RL, Zhang LL, Cao ZS, et al. Ultra-structural changes in wheat embryo cell and aging mechanism under micro-environment storage conditions. J Chin Cereals Oils Assoc, 2014, 29(10): 77-82 (in Chinese). 王若兰, 张丽丽, 曹志帅, 等. 储藏微环境下小麦胚细胞超微结构变化及衰老机制研究. 中国粮油学报, 2014, 29(10): 77-82.
    [42] Zhao KT, Li LH. Cellular substance exudation and ultrastructural change of seed embryos of Pinus koraiensis during the process of artificially accelerated aging. J Northeast For Univ, 2000, 28(3): 5-7 (in Chinese). 赵垦田, 李立华. 人工老化过程红松种胚细胞物质外渗和超微结构变化. 东北林业大学学报, 2000, 28(3): 5-7.
    [43] Xin X, Tian Q, Yin G, et al. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed. J Plant Physiol, 2014, 171(2): 140-147.
    [44] Wang Y, Li Y, Xue H, et al. Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L. ) seeds. Plant J, 2015, 81(3): 438-452.
    [45] Zhu YQ, Yan HF, Xia FS, et al. The relationship between mitochondria and seed aging. Pratacultural Sci, 2016, 33(2): 290-298 (in Chinese). 朱艳乔, 闫慧芳, 夏方山, 等. 线粒体与种子老化的关系. 草业科学, 2016, 33(2): 290-298.
    [46] Cheng H, Chen LL, Xia FS, et al. Advances in the molecular biology study of seed aging. Pratacultural Sci, 2017, 34(1): 129-137 (in Chinese). 程航, 陈玲玲, 夏方山, 等. 种子老化的分子生物学研究. 草业科学, 2017, 34(1): 129-137.
    [47] Chen H, Osuna D, Colville L, et al. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One, 2013, 8(10): e78471.
    [48] Yang WF, Zhang JL, Lü WZ, et al. Study on the differential genes expression in maize embryo treated by a controlled deterioration treatment. Sci Agric Sin, 2014, 47(10): 1878-1893 (in Chinese). 杨伟飞, 张景龙, 吕伟增, 等. 人工劣变处理对玉米种胚差异基因表达的影响. 中国农业科学, 2014, 47(10): 1878-1893.
    [49] Wang T, Hou L, Jian H, et al. Combined QTL mapping, physiological and transcriptomic analyses to identify candidate genes involved in Brassica napus seed aging. Mol Genet Genomics, 2018, 293(6): 1421-1435.
    [50] Prieto-Dapena P, Casta o R, Almoguera C, et al. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol, 2006, 142(3): 1102-1112.
    [51] Gao JD. Study on the physiological characteristics and proteomics of seed storability of hybrid rice[D]. Changsha: Hunan Agricultural University, 2012 (in Chinese). 高家东. 杂交水稻种子耐贮藏生理基础和蛋白质组学研究[D]. 长沙: 湖南农业大学, 2012.
    [52] Xu PY, Deng HP, Zhang JH, et al. Analysis of differential expression of seed embryo protein in the artificial aging process in rice. J Southwest Univ Nat Sci Ed, 2010, 32(12): 1-7 (in Chinese). 胥鹏宇, 邓洪平, 张家辉, 等. 水稻种子胚人工老化过程中蛋白质差异表达分析. 西南大学学报(自然科学版), 2010, 32(12): 1-7.
    [53] Chen X, Yin G, B rner A, et al. Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. Plant Physiol Biochem, 2018, 130: 455-463.
    [54] Giuliani MM, Palermo C, De Santis MA, et al. Differential expression of durum wheat gluten proteome under water stress during grain filling. J Agric Food Chem, 2015, 63(29): 6501-6512.
    [55] Lin XH. Research on the changes of proteome in the seed embryo of Zea mays during the artificial aging[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010 (in Chinese). 林信海. 玉米种子人工老化过程中胚蛋白质组的变化研究[D]. 福州: 福建农林大学, 2010.
    [56] Zhang H, Wang WQ, Liu SJ, et al. Proteome analysis of poplar seed vigor. PLoS One, 2015, 10(7): e0132509.
    [57] Yin GK, Xin X, Fu SZ, et al. Proteomic and carbonylation profile analysis at the critical node of seed ageing in Oryza sativa. Sci Rep, 2017, 7: 40611.
    [58] Gayen D, Ali N, Ganguly M, et al. RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell Tissue Organ Cult PCTOC, 2014, 118(2): 229-243.
    [59] Huang JX. Isolation and characterization of seed OsLOX2 gene in rice[D]. Nanjing: Nanjing Agricultural University, 2011 (in Chinese). 黄洁雪. 水稻种胚脂氧合酶基因OsLOX2的克隆与功能分析[D]. 南京: 南京农业大学, 2011.
    [60] Bai SY, He NQ, Zhou L, et al. Knock-down of OsLOX by RNA interference leads to improved seed viability in rice. J Plant Biol, 2015, 58(5): 293-302.
    [61] Devaiah SP, Pan X, Hong Y, et al. Enh
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩沛霖,李月明,刘梓毫,周万里,杨帆,王竞红,阎秀峰,蔺吉祥. 植物种子老化的生理学研究进展[J]. 生物工程学报, 2022, 38(1): 77-88

复制
分享
文章指标
  • 点击次数:589
  • 下载次数: 2251
  • HTML阅读次数: 1896
  • 引用次数: 0
历史
  • 收稿日期:2021-02-06
  • 在线发布日期: 2022-01-25
文章二维码
您是第6320493位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司