微生物除Mn(Ⅱ)机制及影响因素研究进展
作者:
基金项目:

国家自然科学基金(41967006)


The mechanism of microbial removal of Mn(Ⅱ) and its influencing factors: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    锰是生物所必需的一种微量元素,但工业技术发展以及矿产资源的开发导致大量的Mn(Ⅱ)排放进入环境中对人体健康产生严重威胁。微生物修复技术可快速高效去除环境中的Mn(Ⅱ),且无二次污染,成为近年研究的热点。本文综述了除Mn(Ⅱ)微生物的种类与分布及其除Mn(Ⅱ)的机制,总结了影响微生物除Mn(Ⅱ)的因素,并展望了除锰微生物的前景,以期为除锰微生物在锰污染水体中的高效应用提供理论参考。

    Abstract:

    Manganese is an element essential for living organisms. Development of industrial technologies and exploitation of mineral resources have led to the release of large amount of Mn(Ⅱ) into the environment, posing a serious threat to human health. Bioremediation can remove the Mn(Ⅱ) from the environment rapidly and effectively without generating secondary pollution, thus received increasing attention. This review summarized the diversity and distribution of Mn(Ⅱ) removal microorganisms and the associated mechanisms, followed by discussing the effect of environmental factors on microbial Mn(Ⅱ) removal. Finally, the challenges and prospects for bioremediation of Mn(Ⅱ) polluted wastewater were proposed.

    参考文献
    [1] Das AP, Ghosh S, Mohanty S, et al. Advances in Manganese Pollution and Its Bioremediation. Cham: Springer International Publishing, 2015, 45: 313-328.
    [2] Zheng J, Meng YT, Liu GJ. Advances in bacterial Mn(Ⅱ) oxidation by animal haem peroxidases. Acta Microbiol Sin, 2017, 45(7): 969-977 (in Chinese). 郑洁, 孟佑婷, 刘桂君. 动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进展. 微生物学报, 2017, 45(7): 969-977.
    [3] Patil DS, Chavan SM, Kennedy Oubagaranadin JU. A review of technologies for manganese removal from wastewaters. J Environ Chem Eng, 2016, 4(1): 468-487.
    [4] Rose AK, Fabbro L, Kinnear S. Hydrogeochemistry in a relatively unmodified subtropical catchment: insights regarding the health and aesthetic risks of manganese. J Hydrol: Reg Stud, 2017, 13: 152-167.
    [5] Wang XY, Yang YL, Li X, et al. Manganese removal and characterization of manganese oxides induced by biologically and chemically on the matured sand. Desalin Water Treat, 2020, 190: 279-293.
    [6] Li YC, Xu Z, Ma HQ, et al. Removal of manganese(Ⅱ) from acid mine wastewater: a review of the challenges and opportunities with special emphasis on Mn-oxidizing bacteria and microalgae. Water, 2019, 11(12): 2493.
    [7] Zhu G, Wang C, Lu LI. Pollution characteristics and ecological risk assessment of soil in Xiangtan Jinshi manganese mining area. J Anhui Agric Sci, 2018, 46(34): 48-58.
    [8] Savenko VS. A semiempirical mathematical model of the secondary pollution of water bodies by soluble iron and manganese forms. Water Resour, 2016, 43(6): 862-872.
    [9] Tobiason JE, Bazilio A, Goodwill J, et al. Manganese removal from drinking water sources. Curr Pollution Rep, 2016, 2(3): 168-177.
    [10] Huang HM, Zhao YL, Xu ZG, et al. Biosorption characteristics of a highly Mn(Ⅱ)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS One, 2018, 13(8): e0203285.
    [11] Shu JC, Liu RL, Liu ZH, et al. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue. Environ Sci Pollut Res, 2015, 22(20): 16004-16013.
    [12] Zhang WS, Cheng CY, Pranolo Y. Investigation of methods for removal and recovery of manganese in hydrometallurgical processes. Hydrometallurgy, 2010, 101(1-2): 58-63.
    [13] Wang TQ, Yao J, Yuan ZM, et al. Isolation of lead-resistant Arthrobacter strain GQ-9 and its biosorption mechanism. Environ Sci Pollut Res, 2018, 25(4): 3527-3538.
    [14] Ahuja S. Advances in water purification techniques. NC, United States: Ahuja Consulting, Calabash, 2019: 1-15.
    [15] Liu ZP, Liu SJ. Development of bioremediation in China-a review. Chin J Biotech, 2015, 31(6): 901-916 (in Chinese). 刘志培, 刘双江. 我国污染土壤生物修复技术的发展及现状. 生物工程学报, 2015, 31(6): 901-916.
    [16] Duan GL, Cui HL, Yang YP, et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Chin J Biotech, 2020, 36(3): 455-470 (in Chinese). 段桂兰, 崔慧灵, 杨雨萍, 等. 重金属污染土壤中生物间相互作用及其协同修复应用. 生物工程学报, 2020, 36(3): 455-470.
    [17] Cui XW, Isolation, identification of manganese- oxidizing bacterium and its manganese oxidition characteristics[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). 崔馨文. 锰氧化细菌的分离鉴定及其锰氧化能力的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [18] Spiro TG, Bargar JR, Sposito G, et al. Bacteriogenic manganese oxides. Accounts Chem Res, 2010, 43(1): 2-9.
    [19] Zhang Y, Tang Y, Qin Z, et al. A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02: Mn(Ⅱ) oxidization and biogenic Mn oxides generation. J Hazard Mater, 2019, 367: 539-545.
    [20] Liao SJ, W GJ, Application of manganese oxidizing bacteria and biogenic manganese oxide in remediation of environmental pollution: a review. J Huazhong Agric Univ, 2013, 32(5): 9-14 (in Chinese). 廖水姣, 王革娇. 锰氧化菌及其生物锰氧化物在环境污染修复中的应用研究进展. 华中农业大学学报, 2013, 32(5): 9-14.
    [21] Nealson KH, Tebo BM, Rosson RA. Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol, 1988, 33(6): 279-318.
    [22] Caspi R, Tebo BM, Haygood MG. C-type cytochromes and manganese oxidation in Pseudomonas putida MnB1. Appl Environ Microb, 1998, 64(10): 3549-3555.
    [23] Mckee KP, Vance CC, Karthikeyan R. Biological manganese oxidation by Pseudomonas putida in trickling filters. J Environ Health, 2016, 51(7): 523-535.
    [24] Chapnick W. Metal-depositing bacteria and the distribution of manganese and iron in swamp waters. Ecol Bull, 1983(35): 367-376.
    [25] De Schamphelaire L, Rabaey K, Boon N, et al. Minireview: the potential of enhanced manganese redox cycling for sediment oxidation. Geomicrobiol J, 2007, 24(7-8): 547-558.
    [26] Emerson D, Ghiorse WC. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microb, 1992, 58(12): 4001-4010.
    [27] De Vrind JPM, De Jong- De Jong EW, De Voogt JWH, et al. Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl Environ Microb, 1986, 52(5): 1096-1100.
    [28] Ferreira L, Rosales E, Danko MSA, et al. Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot, 2016, 101: 19-26.
    [29] Zhou D, Kim DG, Ko SO. Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1. J Ind Eng Chem, 2015, 24: 132-139.
    [30] Eggerichs T, Otte T, Opel O, et al. Direct and Mn-controlled indirect iron oxidation by Leptothrix discophora SS-1 and Leptothrix cholodnii. Geomicrobiol J, 2015, 32(10): 934-943.
    [31] Akob DM, Bohu T, Beyer A, et al. Identification of Mn(Ⅱ)-oxidizing bacteria from a low-pH contaminated former uranium mine. Appl Environ Microb, 2014, 80(16): 5086-5097.
    [32] Khalilnezhad R, Olya ME, Khosravi M, et al. Manganese biosorption from aqueous solution by Penicillium camemberti biomass in the batch and fix bed reactors: a kinetic study. Appl Biochem Biotech, 2014, 174(5): 1919-1934.
    [33] Parvathi K, Nareshkumar R, Nagendran R. Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microb Biot, 2007, 23(5): 671-676.
    [34] Fadel M, Hassanein NM, Elshafei MM, et al. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC J, 2017, 13(1): 106-113.
    [35] Miyata N, Tani Y, Sakata M, et al. Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng, 2007, 104(1): 1-8.
    [36] Cahyani VR, Murase J, Ishibashi E, et al. Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils. Biol Fert Soils, 2009, 45(4): 337-346.
    [37] Parikh SJ, Chorover J. FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol J, 2005, 22(5): 207-218.
    [38] Silva RMP, Rodríguez A, De Oca JMGM, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresource Technol, 2009, 100(4): 1533-1538.
    [39] Bargar JR, Tebo BM, Bergmann U, et al. Biotic and abiotic products of Mn(Ⅱ) oxidation by spores of the marine Bacillus sp. strain SG-1. Am Mineral, 2005, 90(1): 143-154.
    [40] Tang WW, Gong JM, Wu LJ, et al. DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (Ⅱ) concentrations. Chemosphere, 2016, 165: 277-283.
    [41] Tang WW, Xia J, Zeng XP, et al. Biological characteristics and oxidation mechanism of a new manganese-oxidizing bacteria FM-2. Bio-Med Mater Eng, 2014, 24(1): 703-709.
    [42] Wan WJ, Xue ZJ, Zhang ZW, et al. Manganese oxidation characteristics and oxidation mechanism of a manganese-oxidizing bacterium Arthrobacter sp. HW-16. Environmental Sci, 2017, 38(5): 2036-2043 (in Chinese). 万文结, 薛芷筠, 张泽文, 等. 锰氧化菌Arthrobactersp. HW-16的锰氧化特性和氧化机制. 环境科学, 2017, 38(5): 2036-2043.
    [43] Therdkiattikul N, Ratpukdi T, Kidkhunthod P, et al. Manganese-contaminated groundwater treatment by novel bacterial isolates: kinetic study and mechanism analysis using synchrotron-based techniques. Sci Rep, 2020, 10(1): 13391.
    [44] Zhao Y, Li D, Li XK, et al. A highly effective engineering strain MSB-4 for biological removal of iron and manganese. China Water & Wastewater, 2009, 25(01): 40-44 (in Chinese). 赵焱, 李冬, 李相昆, 等. 高效生物除铁除锰工程菌MSB-4的特性研究. 中国给水排水, 2009, 25(01): 40-44.
    [45] Cerrato JM, Falkinham JO, Dietrich AM, et al. Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems. Water Res, 2010, 44 (13): 3935-3945.
    [46] Santelli CM, Chaput DL, Hansel CM. Microbial communities promoting Mn(Ⅱ) oxidation in Ashumet pond, a historically polluted freshwater pond undergoing remediation. Geomicrobiol J, 2014, 31(7): 605-616.
    [47] Hou DM, Zhang P, Wei DN, et al. Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. J Hazard Mater, 2020, 396: 122631.
    [48] Wang WM, Shao ZZ, Wang GJ. Mn(Ⅱ) oxidation and removing by a manganese-oxidizing bacterium from deep sea. Hubei Agric Sci, 2009, 48(1): 85-88 (in Chinese). 王文明, 邵宗泽, 王革娇. 一株海洋锰氧化细菌对Mn(Ⅱ) 的氧化去除研究. 湖北农业科学, 2009, 48(1): 85-88.
    [49] Fadel M, Hassanein NM, Elshafei MM, et al. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC J, 2017, 13(1): 106-113.
    [50] Santelli CM, Webb SM, Dohnalkova AC, et al. Diversity of Mn oxides produced by Mn(Ⅱ)-oxidizing fungi. Geochim Cosmochim Ac, 2011, 75(10): 2762-2776.
    [51] Miyata N, Tani Y, Maruo K, et al. Manganese(Ⅳ) oxide production by Acremonium sp. strain KR21-2 and extracellular Mn(Ⅱ) oxidase activity. Appl Environ Microb, 2006, 72(10): 6467-6473.
    [52] Tang Y, Zeiner CA, Santelli CM, et al. Fungal oxidative dissolution of the Mn(Ⅱ)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ Microbiol, 2013, 15(4): 1063-1077.
    [53] Gadd GM. Microbial influence on metal mobility and application for bioremediation. Geoderma, 2004, 122(s2–4): 109-119.
    [54] Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 2010, 156(3): 609-643.
    [55] Gavrilescu M. Removal of heavy metals from the environment by biosorption. Eng Life Sci, 2010, 4(3): 219-232.
    [56] Das N, Vimala R, Karthika P. Biosorption of heavy metals – an overview. Indian J Biotechnol, 2008, 7: 159-169.
    [57] Hasan HA, Abdullah S, Kofli NT, et al. Biosorption of manganese in drinking water by isolated bacteria. J Appl Sci, 2010, 10(21): 2653-2657.
    [58] Bai YH, Su JF, Wen Q, et al. Characterization and mechanism of Mn(Ⅱ)-based mixotrophic denitrifying bacterium (Cupriavidus sp. HY129) in remediation of nitrate (NO3--N) and manganese (Mn(Ⅱ)) contaminated groundwater. J Hazard Mater, 2021, 408: 124414.
    [59] Su JM, Peng B, Bai TL, et al. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One, 2013, 8(4): e60573.
    [60] Butterfield CN, Tebo BM. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12. Metallomics, 2017, 9(2): 183-191.
    [61] Corstjens PLAM, Vrind JPMD, Goosen T, et al. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J, 1997, 14(2): 91-108.
    [62] Ridge JP, Lin M, Larsen EI, et al. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol, 2007, 9(4): 944-953.
    [63] Soldatova AV, Tao L, Romano CA, et al. Mn(Ⅱ) oxidation by the multicopper oxidase complex Mnx: a binuclear activation mechanism. J Am Chem Soc, 2017, 139(33): 11369.
    [64] Tao L, Stich TA, Soldatova AV, et al. Mn(Ⅲ) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem, 2018, 23(7): 1093-1104.
    [65] Duan GW, Geng XY, Wei XY, et al. Advances in physiological and ecological functions of manganese oxidizing bacteria and the underlying molecular mechanisms. Microbiol China, 2020, 47(9): 364-378 (in Chinese). 段国文, 耿新燕, 魏绪宇, 等. 锰氧化细菌的生理生态功能与作用机制研究进展. 微生物学通报, 2020, v. 47(9): 364-378.
    [66] Soldatova AV, Romano CA, Tao L, et al. Mn(Ⅱ) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(Ⅱ)/(Ⅲ) and Mn(Ⅲ)/(Ⅳ) mechanism. J Am Chem Soc, 2017, 139(33): 11381-11391.
    [67] Anderson CR, Johnson HA, Caputo N, et al. Mn(Ⅱ) oxidation is catalyzed by heme peroxidases in "Aurantimonas manganoxydans" strain SI85-9A1 and Erythrobacter sp. strain SD-21. Appl Environ Microbiol, 2009, 75(12): 4130-4138.
    [68] Thompson IA, Huber DM, Schulze DG. Evidence of a multicopper oxidase in Mn oxidation by Gaeumannomyces graminis var. tritici. Phytopathology, 2006, 96(2): 130-136.
    [69] Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol, 2002, 30(4): 454-466.
    [70] Richardson LL, Nealson A. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnol Oceanogr, 1988, 33(3): 352-363.
    [71] Hullo MF, Moszer I, Danchin A, et al. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol, 2001, 183(18): 5426–5430.
    [72] Barboza NR, Amorim SS, Santos PA, et al. Indirect manganese removal by Stenotrophomonas sp. and Lysinibacillus sp. isolated from Brazilian mine water. Biomed Res Int, 2015(4): 1-14.
    [73] Hansel CM, Zeiner CA, Santelli CM, et al. Mn(Ⅱ) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci USA, 2012, 109(31): 12621-12625.
    [74] Learman DR, Voelker BM, Vazquez-Rodriguez AI, et al. Formation of manganese oxides by bacterially generated superoxide. Nat Geosci, 2011, 4(2): 95-98.
    [75] Andeer PF, Learman DR, Mcilvin. M, et al. Extracellular haem peroxidases mediate Mn(Ⅱ) oxidation in a marine Roseobacter bacterium via superoxide production. Environ Microbiol, 2015, 17(10): 3925-3936.
    [76] Sikora FJ, Behrends LL, Brodie GA, et al. Design criteria and required chemistry for removing manganese in acid mine drainage using subsurface flow wetlands. Water Environ Res, 2000, 72(5): 536-544.
    [77] Zhao X, Wang XH, Liu BF, et al. Characterization of manganese oxidation by Brevibacillus at different ecological conditions. Chemosphere, 2018, 205: 553-558.
    [78] An Q, Jin L, Deng SM, et al. Removal of Mn(Ⅱ) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms. Environ Sci Pollut Res, 2021, 28(24): 31218-31229.
    [79] Saygideger S, Gulnaz O, Istifli ES, et al. Adsorption of Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ) ions by Lemna minor L. : effect of physicochemical environment. J Hazard Mater, 2005, 126(1/3): 96-104.
    [80] Zhang L, Li TT, Wang F, et al. Isolation and identification of manganese-oxidizing bacterium and its manganese oxidation characteristic. Microbiol China, 2011, 38(3): 328-332 (in Chinese). 张璐, 李婷婷, 王芳, 等. 锰氧化细菌的分离鉴定及其锰氧化特性的分析. 微生物学通报, 2011, 38(3): 328-332.
    [81] (in Chinese). Wang Y, He F, You JJ, et al. Screening and identification of a manganese-resistant strain and its manganese biosorption conditions. Acta Agric Boreali-occidentalis Sin, 2013, 22(7): 193-199. 王燕, 何峰, 尤健健, 等. 锰抗性微生物的筛选鉴定及其对Mn2+的吸附. 西北农业学报, 2013, 22(7): 193-199
    [82] Wang WX, Ma JY, Zhu YJ, et al. Identification of a manganese-oxidizing fungus isolated from marine sediment and its Mn(Ⅱ) oxidation characteristics. Chin J Appl Environ Biol, 2015(6): 1032-1036 (in Chinese). 王文秀, 马靖宇, 朱祎捷, 等. 一株海洋锰氧化真菌的分离, 鉴定及其对Mn(Ⅱ) 的氧化特性. 应用与环境生物学报, 2015, 21(6): 1032-1036.
    [83] Sasaki K, Matsuda M, Hirajima T, et al. Immobilization of Mn(Ⅱ) ions by a Mn-oxidizing fungus Paraconiothyrium sp. -Like strain at neutral pHs. Mater Trans, 2006, 47(10): 2457-2461.
    [84] Tang WW, Liu YY, Gong JM, et al. Analysis of manganese oxidase and its encoding gene in Lysinibacillus strain MK-1. Process Saf Environ, 2019, 127: 299-305.
    [85] Barboza NR, Guerra-Sá R, Leo VA. Mechanisms of manganese bioremediation by microbes: an overview. J Chem Technol Biot, 2016, 91(11): 2733-2739.
    [86] Huang XJ, Wang YX, Ni JP, et al. Metal oxide nanoparticles resonate to ammonium removal through influencing Mg2+ absorption by Pseudomonas putida Y-9. Bioresour Technol, 2019, 296: 1-6.
    [87] Huang XJ, Jiang DH, Ni JP, et al. Removal of ammonium and nitrate by the hypothermia bacterium Pseudomonas putida Y-9 mainly through assimilation. Environ Technol Innov, 2021, 22: 1-9.
    [88] Cao Q, Li XC, Jiang HE, et al. Ammonia removal through combined methane oxidation and nitrification-denitrification and the interactions among functional microorganisms. Water Res, 2021, 188: 116555.
    [89] Chen JL, Xu J, Zhang SN, et al. Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14. J Environ Manage, 2021, 282: 111961.
    [90] Bai YH, Su JF, Wen Q, et al. Removal of tetracycline by denitrifying Mn(Ⅱ)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): efficiency and mechanisms. Bioresour Technol, 2020, 312: 123565.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

铁文周,农小芳,赵伊,梁康,黄雪娇. 微生物除Mn(Ⅱ)机制及影响因素研究进展[J]. 生物工程学报, 2022, 38(1): 14-25

复制
分享
文章指标
  • 点击次数:460
  • 下载次数: 1690
  • HTML阅读次数: 2811
  • 引用次数: 0
历史
  • 收稿日期:2021-05-25
  • 在线发布日期: 2022-01-25
文章二维码
您是第6291639位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司