纳米孔测序技术在环境微生物研究中的应用
作者:
基金项目:

国家重点研发计划(2019YFC0409202)


Application of nanopore sequencing in environmental microbiology research
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    高通量测序技术是研究环境微生物的有效手段,而以纳米孔测序为代表的第三代测序技术以其测序读长长、测序速度快、测序数据实时监控、仪器方便携带、无GC偏好性、无需经过PCR扩增等显著优势有力推动了环境微生物研究的发展。本文对纳米孔测序技术的技术原理和特点进行了简要概述,重点介绍了纳米孔测序技术在环境微生物扩增子测序、宏基因组测序、全基因组测序等领域的研究应用,并分析了纳米孔测序技术在环境微生物应用中的优势及存在的问题。

    Abstract:

    The development of high-throughput sequencing techniques enabled a deeper and more comprehensive understanding of environmental microbiology. Specifically, the third-generation sequencing techniques represented by nanopore sequencing have greatly promoted the development of environmental microbiology research due to its advantages such as long sequencing reads, fast sequencing speed, real-time monitoring of sequencing data, and convenient machine carrying, as well as no GC bias and no PCR amplification requirement. This review briefly summarized the technical principle and characteristics of nanopore sequencing, followed by discussing the application of nanopore sequencing techniques in the amplicon sequencing, metagenome sequencing and whole genome sequencing of environmental microorganisms. The advantages and challenges of nanopore sequencing in the application of environmental microbiology research were also analyzed.

    参考文献
    [1] Overmann J, Abt B, Sikorski J. Present and future of culturing bacteria. Annu Rev Microbiol, 2017, 71: 711-730.
    [2] Daims H, Wagner M. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl Microbiol Biotechnol, 2007, 75(2): 237-248.
    [3] Li RY, Zhang T, Fang HHP. Application of molecular techniques on heterotrophic hydrogen production research. Bioresour Technol, 2011, 102(18): 8445-8456.
    [4] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. PNAS, 1977, 74(12): 5463-5467.
    [5] Shokralla S, Gibson JF, Nikbakht H, et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour, 2014, 14(5): 892-901.
    [6] Treffer R, Deckert V. Recent advances in single-molecule sequencing. Curr Opin Biotechnol, 2010, 21(1): 4-11.
    [7] Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol, 2009, 4(4): 265-270.
    [8] Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol, 2008, 26(10): 1146-1153.
    [9] Wang KY, Li PH, Lin YF, et al. Metagenomic diagnosis for a culture-negative sample from a patient with severe pneumonia by nanopore and next-generation sequencing. Front Cell Infect Microbiol, 2020, 10: 182.
    [10] Pfefferle S, Huang JB, Nrz D, et al. Complete genome sequence of a SARS-CoV-2 strain isolated in northern Germany. Microbiol Resour Announc, 2020, 9(23): e00520-20.
    [11] Cao Y, Fanning S, Proos S, et al. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol, 2017, 8: 1829.
    [12] Cui C, Herlihy JH, Bombarely A, et al. Draft assembly of Phytophthora capsici from long-read sequencing uncovers complexity. Mol Plant Microbe Interact, 2019, 32(12): 1559-1563.
    [13] Overholt WA, Hlzer M, Geesink P, et al. Inclusion of Oxford nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system. Environ Microbiol, 2020, 22(9): 4000-4013.
    [14] Feng Y, Zhang Y, Ying C, et al. Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics, 2015, 13(1): 4-16.
    [15] Lu H, Giordano F, Ning Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics, 2016, 14(5): 265-279.
    [16] Menegon M, Cantaloni C, Rodriguez-Prieto A, et al. On site DNA barcoding by nanopore sequencing. PLoS One, 2017, 12(10): e0184741.
    [17] Johnson SS, Zaikova E, Goerlitz DS, et al. Real-time DNA sequencing in the Antarctic dry valleys using the Oxford nanopore sequencer. J Biomol Tech, 2017, 28(1): 2-7.
    [18] Edwards A, Debbonaire AR, Sattler B, et al. Extreme metagenomics using nanopore DNA sequencing: a field report from Svalbard, 78 N. BioRxiv, 2016. DOI: https://doi.org/10.1101/073965.
    [19] Castro-Wallace SL, Chiu CY, John KK, et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci Rep, 2017, 7(1): 18022.
    [20] Aird D, Ross MG, Chen WS, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol, 2011, 12(2): R18.
    [21] Schalamun M, Nagar R, Kainer D, et al. Harnessing the MinION: an example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Mol Ecol Resour, 2019, 19(1): 77-89.
    [22] Jain M, Olsen HE, Paten B, et al. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol, 2016, 17(1): 239.
    [23] Rang FJ, Kloosterman WP, De Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol, 2018, 19(1): 90.
    [24] Calus ST, Ijaz UZ, Pinto AJ. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience, 2018, 7(12): giy140.
    [25] Neefs JM, Van de Peer Y, De Rijk P, et al. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res, 1993, 21(13): 3025-3049.
    [26] Claesson MJ, Wang Q, O’Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res, 2010, 38(22): e200.
    [27] Krishnaswamy VG, Aishwarya S, Kathawala TM. Extrication of the microbial interactions of activated sludge used in the textile effluent treatment of anaerobic reactor through metagenomic profiling. Curr Microbiol, 2020, 77(9): 2496-2509.
    [28] Earl JP, Adappa ND, Krol J, et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome, 2018, 6(1): 190.
    [29] Han YY, Yang QQ, Wang QN, et al. Application of single molecule real time sequencing in environmental microorganisms research. Microbiol China, 2019, 46(11): 3140-3147 (in Chinese). 韩迎亚, 杨乔乔, 王倩楠, 等. 单分子实时测序技术在环境微生物研究中的应用. 微生物学通报, 2019, 46(11): 3140-3147.
    [30] Samson R, Rajput V, Shah M, et al. Deciphering taxonomic and functional diversity of fungi as potential bioindicators within confluence stretch of Ganges and Yamuna Rivers, impacted by anthropogenic activities. Chemosphere, 2020, 252: 126507.
    [31] Bangayan NJ, Shi BC, Trinh J, et al. MG-MLST: characterizing the microbiome at the strain level in metagenomic data. Microorganisms, 2020, 8(5): 684.
    [32] Hortelano I, Moreno Y, Moreno-Mesonero L, et al. Deep-amplicon sequencing (DAS) analysis to determine the presence of pathogenic Helicobacter species in wastewater reused for irrigation. Environ Pollut, 2020, 264: 114768.
    [33] Yu X, Jiang W, Shi Y, et al. Applications of sequencing technology in clinical microbial infection. J Cell Mol Med, 2019, 23(11): 7143-7150.
    [34] Van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends Genet, 2018, 34(9): 666-681.
    [35] Xu ZW, Wei YL, Ji XL. Advances in viral metagenomics. Microbiol China, 2020, 47(8): 2560-2570 (in Chinese). 徐志伟, 魏云林, 季秀玲. 病毒宏基因组学研究进展. 微生物学通报, 2020, 47(8): 2560-2570.
    [36] Takeda H, Yamashita T, Ueda Y, et al. Exploring the hepatitis C virus genome using single molecule real-time sequencing. World J Gastroenterol, 2019, 25(32): 4661-4672.
    [37] Białasek M, Miłobędzka A. Revealing antimicrobial resistance in stormwater with MinION. Chemosphere, 2020, 258: 127392.
    [38] Carr CE, Bryan NC, Saboda KN, et al. Nanopore sequencing at Mars, Europa, and microgravity conditions. Npj Microgravity, 2020, 6: 24.
    [39] Góngora-Castillo E, Buell CR. Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. Nat Prod Rep, 2013, 30(4): 490-500.
    [40] Cao Y, Li W, Chu X, et al. Research progress and application of nanopore sequencing technology. Chin J Biotech, 2020, 36(5): 811-819 (in Chinese). 曹影, 李伟, 褚鑫, 等. 单分子纳米孔测序技术及其应用研究进展. 生物工程学报, 2020, 36(5): 811-819.
    [41] Sher S, Hussain SZ, Rehman A. Phenotypic and genomic analysis of multiple heavy metal-resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol, 2020, 104(5): 2243-2254.
    [42] Jose VL, Pileggi MT, Alam MT, et al. Draft genome sequence of an environmental Vibrio cholerae strain, 2012Env-25, obtained using nanopore sequencing technology. Microbiol Resour Announc, 2020, 9(32): e00625-20.
    [43] Finton MD, Meisal R, Porcellato D, et al. Whole genome sequencing and characterization of multidrug-resistant (MDR) bacterial strains isolated from a Norwegian university campus pond. Front Microbiol, 2020, 11: 1273.
    [44] Sorokin DY, Mosier D, Zorz JK, et al. Wenzhouxiangella strain AB-CW3, a proteolytic bacterium from hypersaline soda lakes that preys on cells of gram-positive bacteria. Front Microbiol, 2020, 11: 597686.
    [45] Grevskott DH, Salvà-Serra F, Moore ERB, et al. Nanopore sequencing reveals genomic map of CTX-M-type extended-spectrum β-lactamases carried by Escherichia coli strains isolated from blue mussels (Mytilus edulis) in Norway. BMC Microbiol, 2020, 20(1): 134.
    [46] Li RC, Peng K, Li Y, et al. Exploring Tet(X)-bearing tigecycline-resistant bacteria of swine farming environments. Sci Total Environ, 2020, 733: 139306.
    [47] Chng KR, Li C, Bertrand D, et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat Med, 2020, 26(6): 941-951.
    [48] Quick J, Quinlan AR, Loman NJ. A reference bacterial genome dataset generated on the MinIONTM portable single-molecule nanopore sequencer. Gigascience, 2014, 3: 22.
    [49] Leggett RM, Alcon-Giner C, Heavens D, et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol, 2020, 5(3): 430-442.
    [50] Kilianski A, Haas JL, Corriveau EJ, et al. Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer. Gigascience, 2015, 4: 12.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李中浤,杜彩丽,林彦锋,张列宇,李晓光,黎佳茜,陈素华. 纳米孔测序技术在环境微生物研究中的应用[J]. 生物工程学报, 2022, 38(1): 5-13

复制
分享
文章指标
  • 点击次数:624
  • 下载次数: 1977
  • HTML阅读次数: 1201
  • 引用次数: 0
历史
  • 收稿日期:2021-01-27
  • 在线发布日期: 2022-01-25
文章二维码
您是第6404443位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司